Sesquioxide

Last updated

A sesquioxide is an oxide of an element (or radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide Al2O3 and phosphorus(III) oxide P4O6 are sesquioxides. Many sesquioxides contain a metal in the +3 oxidation state and the oxide ion O2−, e.g., aluminium oxide Al2O3, lanthanum(III) oxide La2O3 and iron(III) oxide Fe2O3. Sesquioxides of iron and aluminium are found in soil. The alkali metal sesquioxides are exceptions because they contain both peroxide O2−2 and superoxide O2 ions, e.g., rubidium sesquioxide Rb4O6 is formulated (Rb+)4(O2−2)(O2)2. [1] Sesquioxides of metalloids and nonmetals are better formulated as covalent, e.g. boron trioxide B2O3, dinitrogen trioxide N2O3 and phosphorus(III) oxide P4O6; chlorine trioxide Cl2O3 and bromine trioxide Br2O3 do not have oxidation state +3 on the halogen.

Many transition metal oxides crystallize in the corundum structure type, with space group R3c. Sesquioxides of rare earth elements crystalize into one or more of three crystal structures: hexagonal (type A, space group P3m1), monoclinic (type B, space group C2/m), or body-centered cubic (type C, space group Ia3). [2] [3]

Sesquioxidizing, meaning the creation of a sesquioxide, is the highest scoring word that would fit on a Scrabble board, [4] though it does not actually appear in any official Scrabble dictionary. [5] Though the Oxford English Dictionary already listed the noun and the past participle adjective — sesquioxidation and sesquioxidized, respectively — the verb, sesquioxidize, and its conjugated forms, have been absent from the dictionaries used as sources for the official Scrabble word lists. An early appearance of the noted present participle had occurred in the 1860 publication of the State of New York's Legislative Assembly's Transactions of the State Medical Society, [6] yet the word's first appearance in a dictionary was in the 1976 edition of Josepha Heifetz Byrne's Mrs. Byrne's Dictionary of Unusual, Obscure, and Preposterous Words ( ISBN   0806504986), [7] One could theoretically score 2044 points in a single move, when otherwise only words from the official Scrabble word list are used. [8]

List of sesquioxides

HHe
LiBe B2O3 C N2O3 OFNe
NaMg Al2O3 Si P4O6 S Cl2O3 Ar
KCa Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3 Co2O3 Ni2O3 Cu2O3 Zn Ga2O3 Ge As2O3 Se Br2O3 Kr
Rb4O6 Sr Y2O3 ZrNb Mo2O3 TcRu Rh2O3 PdAgCd In2O3 Sn Sb2O3 TeIXe
Cs4O6 Ba Lu2O3 HfTa W2O3 ReOs Ir2O3 Pt Au2O3 Hg Tl2O3 Pb2O3 Bi2O3 PoAtRn
FrRaLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
La2O3 Ce2O3 Pr2O3 Nd2O3 Pm2O3 Sm2O3 Eu2O3 Gd2O3 Tb2O3 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3
Ac2O3 ThPaU Np2O3 Pu2O3 Am2O3 Cm2O3 Bk2O3 Cf2O3 Es2O3 FmMdNo


Related Research Articles

<span class="mw-page-title-main">Corundum</span> Oxide mineral

Corundum is a crystalline form of aluminium oxide typically containing traces of iron, titanium, vanadium, and chromium. It is a rock-forming mineral. It is a naturally transparent material, but can have different colors depending on the presence of transition metal impurities in its crystalline structure. Corundum has two primary gem varieties: ruby and sapphire. Rubies are red due to the presence of chromium, and sapphires exhibit a range of colors depending on what transition metal is present. A rare type of sapphire, padparadscha sapphire, is pink-orange.

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.

A trioxide is a compound with three oxygen atoms. For metals with the M2O3 formula there are several common structures. Al2O3, Cr2O3, Fe2O3, and V2O3 adopt the corundum structure. Many rare earth oxides adopt the "A-type rare earth structure" which is hexagonal. Several others plus indium oxide adopt the "C-type rare earth structure", also called "bixbyite", which is cubic and related to the fluorite structure.

<span class="mw-page-title-main">Chromium trioxide</span> Chemical compound

Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions and bright orange when wet. The substance dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser, a mutagen, and a carcinogen.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Antimony trioxide</span> Chemical compound

Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis. A mixed arsenic-antimony oxide occurs in nature as the very rare mineral stibioclaudetite.

<span class="mw-page-title-main">Phosphorus pentoxide</span> Chemical compound

Phosphorus pentoxide is a chemical compound with molecular formula P4O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydrating agent.

In chemistry, an aluminate is a compound containing an oxyanion of aluminium, such as sodium aluminate. In the naming of inorganic compounds, it is a suffix that indicates a polyatomic anion with a central aluminium atom.

<span class="mw-page-title-main">Bismuth(III) oxide</span> Chemical compound

Bismuth(III) oxide is perhaps the most industrially important compound of bismuth. It is also a common starting point for bismuth chemistry. It is found naturally as the mineral bismite (monoclinic) and sphaerobismoite, but it is usually obtained as a by-product of the smelting of copper and lead ores. Dibismuth trioxide is commonly used to produce the "Dragon's eggs" effect in fireworks, as a replacement of red lead.

<span class="mw-page-title-main">Curium(III) oxide</span> Chemical compound

Curium(III) oxide is a compound composed of curium and oxygen with the chemical formula Cm2O3. It is a crystalline solid with a unit cell that contains two curium atoms and three oxygen atoms. The simplest synthesis equation involves the reaction of curium(III) metal with O2−: 2 Cm3+ + 3 O2− ---> Cm2O3. Curium trioxide can exist as five polymorphic forms. Two of the forms exist at extremely high temperatures, making it difficult for experimental studies to be done on the formation of their structures. The three other possible forms which curium sesquioxide can take are the body-centered cubic form, the monoclinic form, and the hexagonal form. Curium(III) oxide is either white or light tan in color and, while insoluble in water, is soluble in inorganic and mineral acids. Its synthesis was first recognized in 1955.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

<span class="mw-page-title-main">Manganese(III) oxide</span> Chemical compound

Manganese(III) oxide is a chemical compound with the formula Mn2O3. It occurs in nature as the mineral bixbyite (recently changed to bixbyite-(Mn)) and is used in the production of ferrites and thermistors.

Aluminium(I) oxide is a compound of aluminium and oxygen with the chemical formula Al2O. It can be prepared by heating the stable oxide Al2O3 with elemental silicon at 1800 °C under vacuum.

<span class="mw-page-title-main">Aluminium compounds</span>

Aluminium (or aluminum) combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and aluminium compounds tend towards covalency; this behaviour is similar to that of beryllium (Be2+), an example of a diagonal relationship. However, unlike all other post-transition metals, the underlying core under aluminium's valence shell is that of the preceding noble gas, whereas for gallium and indium it is that of the preceding noble gas plus a filled d-subshell, and for thallium and nihonium it is that of the preceding noble gas plus filled d- and f-subshells. Hence, aluminium does not suffer the effects of incomplete shielding of valence electrons by inner electrons from the nucleus that its heavier congeners do. Aluminium's electropositive behavior, high affinity for oxygen, and highly negative standard electrode potential are all more similar to those of scandium, yttrium, lanthanum, and actinium, which have ds2 configurations of three valence electrons outside a noble gas core: aluminium is the most electropositive metal in its group. Aluminium also bears minor similarities to the metalloid boron in the same group; AlX3 compounds are valence isoelectronic to BX3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts. Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

Protactinium compounds are compounds containing the element protactinium. These compounds usually have protactinium in the +5 oxidation state, although these compounds can also exist in the +2, +3 and +4 oxidation states.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. Eyring, LeRoy; Holmberg, Bo (1963-01-01). "Ordered Phases and Nonstoichiometry in the Rare Earth Oxide System". Advances in Chemistry. Washington, D. C.: American Chemical Society. pp. 46–57. doi:10.1021/ba-1964-0039.ch004. ISBN   978-0-8412-0040-1. ISSN   0065-2393.
  3. Marezio, M. (1966-11-01). "Refinement of the crystal structure of In2O3 at two wavelengths". Acta Crystallographica. International Union of Crystallography (IUCr). 20 (6): 723–728. doi:10.1107/s0365110x66001749. ISSN   0365-110X.
  4. The Scrabble Omnibus, Gyles Brandreth, ISBN   0-00-218081-2
  5. , David K. Israel, "Scrabble Word Records", March 22, 2010, accessed March 31, 2018
  6. New York State, Legislature, Assembly (1860). Documents of the Assembly of the State of New York, Eighty-third Session. — 1860. Volume IV ; No. 111: Transactions of the State Medical Society, p. 19
  7. Keith W. Smith Total scrabble, page 67
  8. Record for the Highest Scoring Scrabble Move at scrabulizer.com, accessed 2008-05-30