Phosphorus tetroxide

Last updated
Phosphorus tetroxide
Names
Other names
Phosphorus tetroxide
Phosphorus(V) oxide
Phosphoric anhydride
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/O4P2/c1-5-4-6(2)3
    Key: PKSMWOJZXCKNBJ-UHFFFAOYSA-N
  • (P4O7):InChI=1S/O7P4/c1-11-5-8-2-9(6-11)4-10(3-8)7-11
    Key: JXMJWGUWYVJTGA-UHFFFAOYSA-N
  • (P4O8):InChI=1S/O8P4/c1-11-4-9-3-10(5-11)7-12(2,6-9)8-11
    Key: BDFGQAKHAFFJCF-UHFFFAOYSA-N
  • (P4O9):InChI=1S/O9P4/c1-11-4-10-5-12(2,7-11)9-13(3,6-10)8-11
    Key: DKJKPKZTNXPRRP-UHFFFAOYSA-N
  • O=POP(=O)=O
  • (P4O7):O=P12OP3OP(O1)OP(O3)O2
  • (P4O8):O=P12OP3OP(O1)OP(=O)(O3)O2
  • (P4O9):O=P12OP3OP(=O)(O1)OP(=O)(O3)O2
Properties
P2O4
Molar mass 125.96 g·mol −1
AppearanceSolid
Melting point >100 °C
Vapor pressure 2.54 g·cm−3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diphosphorus tetroxide, or phosphorus tetroxide is an inorganic compound of phosphorus and oxygen. It has the empirical chemical formula P2O4. Solid phosphorus tetroxide (also referred to as phosphorus(III,V)-oxide) consists of variable mixtures of the mixed-valence oxides P4O7, P4O8 and P4O9. [1] [2] [3]

Preparation

Phosphorus tetroxide is obtainable by thermal decomposition of phosphorus trioxide, which disproportionates above 210 °C to form phosphorus tetroxide, with elemental phosphorus as a byproduct:

In addition, phosphorus trioxide can be converted into phosphorus tetroxide by controlled oxidation with oxygen in carbon tetrachloride solution. [4] [5] [6]

Careful reduction of phosphorus pentoxide with red phosphorus at 450-525 °C also produces the phosphorus tetroxide.

Related Research Articles

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bind to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element. Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins), in the nucleic acids (DNA and RNA) and in the energy transfer molecule adenosine triphosphate. The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere.

<span class="mw-page-title-main">Osmium</span> Chemical element, symbol Os and atomic number 76

Osmium is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element. When experimentally measured using X-ray crystallography, it has a density of 22.59 g/cm3. Manufacturers use its alloys with platinum, iridium, and other platinum-group metals to make fountain pen nib tipping, electrical contacts, and in other applications that require extreme durability and hardness.

<span class="mw-page-title-main">Oxide</span> Chemical compound with at least one oxygen atom attached to the central atom

An oxide is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 (called a passivation layer) that protects the foil from further corrosion.

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.

<span class="mw-page-title-main">Nonmetal</span> Chemical element that mostly lacks the characteristics of a metal

In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases to shiny solids. The electrons in nonmetals behave differently from those in metals. With some exceptions, those in nonmetals are fixed in place, resulting in nonmetals usually being poor conductors of heat and electricity and brittle or crumbly when solid. The electrons in metals are generally free moving and this is why metals are good conductors and most are easily flattened into sheets and drawn into wires. Nonmetal atoms tend to attract electrons in chemical reactions and to form acidic compounds.

<span class="mw-page-title-main">Dinitrogen tetroxide</span> Chemical compound

Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russia rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.

Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds:

Sulfur trioxide (alternative spelling sulphur trioxide, also known as nisso sulfan) is the chemical compound with the formula SO3. It has been described as "unquestionably the most important economically" sulfur oxide. It is prepared on an industrial scale as a precursor to sulfuric acid.

In chemistry, perxenates are salts of the yellow xenon-containing anion XeO4−
6
. This anion has octahedral molecular geometry, as determined by Raman spectroscopy, having O–Xe–O bond angles varying between 87° and 93°. The Xe–O bond length was determined by X-ray crystallography to be 1.875 Å.

Xenon tetroxide is a chemical compound of xenon and oxygen with molecular formula XeO4, remarkable for being a relatively stable compound of a noble gas. It is a yellow crystalline solid that is stable below −35.9 °C; above that temperature it is very prone to exploding and decomposing into elemental xenon and oxygen (O2).

<span class="mw-page-title-main">Tungsten trioxide</span> Chemical compound

Tungsten(VI) oxide, also known as tungsten trioxide is a chemical compound of oxygen and the transition metal tungsten, with formula WO3. The compound is also called tungstic anhydride, reflecting its relation to tungstic acid H2WO4. It is a light yellow crystalline solid.

<span class="mw-page-title-main">Chromium trioxide</span> Chemical compound

Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions, bright orange when wet and which dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser and a carcinogen.

Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. These compounds are produced on the largest scale of any molybdenum compound. The anhydrous oxide is a precursor to molybdenum metal, an important alloying agent. It is also an important industrial catalyst. It is a yellow solid, although impure samples can appear blue or green.

<span class="mw-page-title-main">Arsenic trioxide</span> Chemical compound (industrial chemical and medication)

Arsenic trioxide, sold under the brand name Trisenox among others, is an inorganic compound and medication. As an industrial chemical, whose major uses include in the manufacture of wood preservatives, pesticides, and glass. As a medication, it is used to treat a type of cancer known as acute promyelocytic leukemia. For this use it is given by injection into a vein.

<span class="mw-page-title-main">Antimony trioxide</span> Chemical compound

Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves in aqueous solutions with hydrolysis. A mixed arsenic-antimony oxide occurs in nature as the very rare mineral stibioclaudetite.

<span class="mw-page-title-main">Phosphorus pentoxide</span> Chemical compound

Phosphorus pentoxide is a chemical compound with molecular formula P4O10 (with its common name derived from its empirical formula, P2O5). This white crystalline solid is the anhydride of phosphoric acid. It is a powerful desiccant and dehydrating agent.

<span class="mw-page-title-main">Phosphoryl chloride</span> Chemical compound

Phosphoryl chloride is a colourless liquid with the formula POCl3. It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosphorus trichloride and oxygen or phosphorus pentoxide. It is mainly used to make phosphate esters such as tricresyl phosphate.

<span class="mw-page-title-main">Arsenic pentoxide</span> Chemical compound

Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is arsenic(III) oxide (As2O3). All inorganic arsenic compounds are highly toxic and thus find only limited commercial applications.

<span class="mw-page-title-main">Xenon trioxide</span> Chemical compound

Xenon trioxide is an unstable compound of xenon in its +6 oxidation state. It is a very powerful oxidizing agent, and liberates oxygen from water slowly, accelerated by exposure to sunlight. It is dangerously explosive upon contact with organic materials. When it detonates, it releases xenon and oxygen gas.

The chemical elements can be broadly divided into metals, metalloids and nonmetals according to their shared physical and chemical properties. All metals have a shiny appearance ; are good conductors of heat and electricity; form alloys with other metals; and have at least one basic oxide. Metalloids are metallic-looking brittle solids that are either semiconductors or exist in semiconducting forms, and have amphoteric or weakly acidic oxides. Typical nonmetals have a dull, coloured or colourless appearance; are brittle when solid; are poor conductors of heat and electricity; and have acidic oxides. Most or some elements in each category share a range of other properties; a few elements have properties that are either anomalous given their category, or otherwise extraordinary.

References

  1. http://www.wiley.com/college/math/chem/cg/sales/voet.html. Archived 2016-03-03 at the Wayback Machine
  2. Alberts B.; et al. (2002). Molecular Biology of the Cell, 4th Ed. Garland Science. ISBN   978-0-8153-4072-0.
  3. Voet D., Voet J. G. (2004-03-09). Biochemistry, 3rd Ed. Wiley. ISBN   978-0-471-19350-0.
  4. Atkins P., de Paula J. (2006). Physical chemistry, 8th Ed . San Francisco: W. H. Freeman. ISBN   978-0-7167-8759-4.
  5. Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General chemistry: principles and modern applications (8th ed.). Upper Saddle River, N.J: Prentice Hall. ISBN   978-0-13-014329-7. LCCN   2001032331. OCLC   46872308.
  6. Laidler K. J. (1978). Physical chemistry with biological applications. Benjamin/Cummings. Menlo Park. ISBN   978-0-8053-5680-9.