Chloroacetone

Last updated
Chloroacetone
Chloroacetone 2D skeletal.svg
Chloroacetone-3D-balls.png
Names
Preferred IUPAC name
1-Chloropropan-2-one
Other names
Acetonyl chloride, chloropropanone, 1-chloro-2-propanone, monochloroacetone, 1-chloro-2-ketopropane, 1-chloro-2-oxypropane
UN 1695
Identifiers
3D model (JSmol)
605369
ChEBI
ChemSpider
ECHA InfoCard 100.001.056 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-161-1
PubChem CID
RTECS number
  • UC0700000
UNII
  • InChI=1S/C3H5ClO/c1-3(5)2-4/h2H2,1H3 Yes check.svgY
    Key: BULLHNJGPPOUOX-UHFFFAOYSA-N Yes check.svgY
  • Key: BULLHNJGPPOUOX-UHFFFAOYAY
  • ClCC(=O)C
Properties
C3H5ClO
Molar mass 92.52 g·mol−1
AppearanceColorless liquid, oxidizes to amber
Density 1.123 g/cm3
Melting point −44.5 °C (−48.1 °F; 228.7 K)
Boiling point 119 °C (246 °F; 392 K)
10 g/100 mL at 20 °C
Solubility miscible with alcohol, ether, chloroform
Vapor pressure 1.5 kPa
-50.9·10−6 cm3/mol
2.36
Hazards
Flash point 35 °C (95 °F; 308 K)
610 °C (1,130 °F; 883 K)
Explosive limits 3.4% - ? [1]
Lethal dose or concentration (LD, LC):
100 mg/kg (rats, oral) [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Chloroacetone is a chemical compound with the formula C H 3COCH2 Cl . At STP it is a colourless liquid with a pungent odour. [3] On exposure to light, it turns to a dark yellow-amber colour. [4] It was used as a tear gas in World War I. [5]

Contents

Synthesis

Chloroacetone may be synthesized from the reaction between chlorine and diketene, or by the chlorination of acetone.

Applications

Chloroacetone is used to make dye couplers for colour photography, and is an intermediate in chemical manufacturing. [2] It is also used in the Feist-Benary synthesis of furans. [6]

FeistBenarysynthesis.gif

Purification

Chloroacetone purchased from commercial suppliers contains 5% impurities including mesityl oxide, which is not removed by distillation. Mesityl oxide can be oxidized using acidified KMnO4 to form a diol (followed by separation with ether), which is removed on subsequent distillation. [8]

Transportation regulations

Transportation of unstabilized chloroacetone has been banned in the United States by the US Department of Transportation. Stabilized chloroacetone is in hazard class 6.1 (Poison Inhalation Hazard). Its UN number is 1695.

See also

Related Research Articles

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Sodium cyanide</span> Chemical compound

Sodium cyanide is a poisonous compound with the formula NaCN. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base.

<span class="mw-page-title-main">Oil refinery</span> Facility that processes crude oil

An oil refinery or petroleum refinery is an industrial process plant where petroleum is transformed and refined into useful products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.

<span class="mw-page-title-main">Pentane</span> Alkane with 5 carbon atoms

Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer, in which case pentanes refers to a mixture of them; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.

<span class="mw-page-title-main">Nonane</span> Chemical compound

Nonane is a linear alkane hydrocarbon with the chemical formula C9H20. It is a colorless, flammable liquid, occurring primarily in the component of the petroleum distillate fraction commonly called kerosene, which is used as a heating, tractor, and jet fuel. Nonane is also used as a solvent, distillation chaser, fuel additive, and a component in biodegradable detergents.

<span class="mw-page-title-main">Ethanolamine</span> Chemical compound

Ethanolamine is a naturally occurring organic chemical compound with the formula HOCH
2
CH
2
NH
2
or C
2
H
7
NO
. The molecule is bifunctional, containing both a primary amine and a primary alcohol. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia.

Dimethylformamide is an organic compound with the formula 2NC(O)H. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

Chlorine trifluoride is an interhalogen compound with the formula ClF3. This colorless, poisonous, corrosive, and extremely reactive gas condenses to a pale-greenish yellow liquid, the form in which it is most often sold. Despite being famous for its extreme oxidation properties and igniting many things, chlorine trifluoride is not combustible itself. The compound is primarily of interest in plasmaless cleaning and etching operations in the semiconductor industry, in nuclear reactor fuel processing, historically as a component in rocket fuels, and various other industrial operations owing to its corrosive nature.

<span class="mw-page-title-main">Cyclohexanone</span> Chemical compound

Cyclohexanone is the organic compound with the formula (CH2)5CO. The molecule consists of six-carbon cyclic molecule with a ketone functional group. This colorless oily liquid has a sweet odor reminiscent of benzaldehyde. Over time, samples of cyclohexanone assume a pale yellow color. Cyclohexanone is slightly soluble in water and miscible with common organic solvents. Billions of kilograms are produced annually, mainly as a precursor to nylon.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Methyl methacrylate</span> Chemical compound

Methyl methacrylate (MMA) is an organic compound with the formula CH2=C(CH3)COOCH3. This colorless liquid, the methyl ester of methacrylic acid (MAA), is a monomer produced on a large scale for the production of poly(methyl methacrylate) (PMMA).

<i>tert</i>-Butyl alcohol Chemical compound

tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.

<span class="mw-page-title-main">Methyl isobutyl ketone</span> Chemical compound

Methyl isobutyl ketone (MIBK) is the common name for the organic compound 4-methylpentan-2-one, condensed chemical formula (CH3)2CHCH2C(O)CH3. This colourless liquid, a ketone, is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose.

<span class="mw-page-title-main">Bromine pentafluoride</span> Chemical compound

Bromine pentafluoride, BrF5, is an interhalogen compound and a fluoride of bromine. It is a strong fluorinating agent.

<span class="mw-page-title-main">Mesityl oxide</span> Chemical compound

Mesityl oxide is a α,β-unsaturated ketone with the formula CH3C(O)CH=C(CH3)2. This compound is a colorless, volatile liquid with a honey-like odor.

<span class="mw-page-title-main">Isobutanol</span> Chemical compound

Isobutanol (IUPAC nomenclature: 2-methylpropan-1-ol) is an organic compound with the formula (CH3)2CHCH2OH (sometimes represented as i-BuOH). This colorless, flammable liquid with a characteristic smell is mainly used as a solvent either directly or as its esters. Its isomers are 1-butanol, 2-butanol, and tert-butanol, all of which are important industrially.

<span class="mw-page-title-main">1-Propanol</span> Primary alcohol compound

1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless liquid and an isomer of 2-propanol. It is formed naturally in small amounts during many fermentation processes and used as a solvent in the pharmaceutical industry, mainly for resins and cellulose esters, and, sometimes, as a disinfecting agent.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

Arsenic pentafluoride is a chemical compound of arsenic and fluorine. It is a toxic, colorless gas. The oxidation state of arsenic is +5.

<span class="mw-page-title-main">Perchloromethyl mercaptan</span> Chemical compound

Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.

References

  1. "ICSC:NENG0760 International Chemical Safety Cards (WHO/IPCS/ILO) CDC/NIOSH". Center for Disease Control. 2006-10-11. Retrieved 2009-04-17.
  2. 1 2 Hathaway, Gloria J.; Proctor, Nick H. (2004). Proctor and Hughes' Chemical Hazards of the Workplace (5 ed.). Wiley-Interscience. pp. 143–144. ISBN   978-0-471-26883-3 . Retrieved 2009-04-16.
  3. "Occupational Safety and Health Guideline for Chloroacetone". U.S. Department of Labor - Occupational Safety & Health Administration. Archived from the original on 2013-05-03. Retrieved 2008-06-06.
  4. "CHLOROACETONE". International Programme on Chemical Safety. Retrieved 2008-06-06.
  5. Haber, Ludwig Fritz (1986). The Poisonous Cloud: Chemical Warfare in the First World War. Oxford University Press. ISBN   0-19-858142-4.
  6. Li, Jie-Jack; Corey, E. J. (2004). Name Reactions in Heterocyclic Chemistry. Wiley-Interscience. p. 160. ISBN   978-0-471-30215-5 . Retrieved 2009-04-16.
  7. Hurd, Charles D.; Perletz, Percy (1946). "Aryloxyacetones1". Journal of the American Chemical Society. 68 (1): 38–40. doi:10.1021/ja01205a012. ISSN   0002-7863.
  8. Phys. Chem. Chem. Phys., 2000,2, 237-245