Calculated Carbon Aromaticity Index

Last updated

The calculated carbon aromaticity index (CCAI) is an index of the ignition quality of residual fuel oil.

The running of all internal combustion engines is dependent on the ignition quality of the fuel. For spark-ignition engines the fuel has an octane rating. For diesel engines it depends on the type of fuel, for distillate fuels the cetane numbers are used. Cetane numbers are tested using a special test engine and the existing engine was not made for residual fuels. For residual fuel oil two other empirical indexes are used: CCAI and Calculated Ignition Index (CII). Both CCAI and CII are calculated from the density and kinematic viscosity of the fuel.

Definition

Formula for CCAI:

which is equivalent to:

Where:
D= density at 15°C (kg/m3)
V= viscosity (cST)
t = viscosity temperature (°C)

Use

This will normally give a value somewhere between 800 and 880. The lower the value is the better the ignition quality. Fuels with a CCAI higher than 880 are often problematic or even unusable in a diesel engine. CCAI are often calculated under testing of marine fuel. In case of high CCAI, the manufacturers recommendations and guidance limits should be consulted to ensure that the fuel falls within the permissible range for the engine type. Attention should be given to the combustion profile, peak pressures and exhaust temperatures on the Engine.

As the name suggests, CCAI is a calculation based on the density and viscosity of a given fuel. The formula is rather complex but in general, the higher the CCAI, the poorer the ignition quality of the fuel is considered to be. Once the CCAI goes above 860, it is an indication that some combustion problems may occur.

Studies carried out by engine manufacturers indicate that combustion related problems caused by fuels with high CCAI can be reduced by avoiding running the engine at part load. It is therefore suggested that wherever possible, the engine load should be maintained above 50% and the chief engineer should listen for indications of poor combustion (i.e. knocking). Should any such problems be noted then it is recommended that an alternative fuel is used whilst further investigations are carried out on samples from this fuel

Related Research Articles

<span class="mw-page-title-main">Compression ratio</span> Ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values.

<span class="mw-page-title-main">Diesel fuel</span> Liquid fuel used in diesel engines

Diesel fuel, also called diesel oil, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a result of compression of the inlet air and then injection of fuel. Therefore, diesel fuel needs good compression ignition characteristics.

An octane rating, or octane number, is a standard measure of a fuel's ability to withstand compression in an internal combustion engine without detonating. The higher the octane number, the more compression the fuel can withstand before detonating. Octane rating does not relate directly to the power output or the energy content of the fuel per unit mass or volume, but simply indicates gasoline's capability against compression.

<span class="mw-page-title-main">Otto cycle</span> Thermodynamic cycle for spark ignition piston engines

An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.

<span class="mw-page-title-main">Motor oil</span> Lubricant used for lubrication of internal combustion engines

Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers.. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves sealing of piston rings, and cools the engine by carrying heat away from moving parts.

<span class="mw-page-title-main">Scramjet</span> Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

<span class="mw-page-title-main">Fuel oil</span> Petroleum product burned to generate motive power or heat

Fuel oil is any of various fractions obtained from the distillation of petroleum. Such oils include distillates and residues. Fuel oils include heavy fuel oil, marine fuel, bunker fuel, furnace oil, gas oil (gasoil), heating oils, diesel fuel and others.

The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection.

<span class="mw-page-title-main">Liquid fuel</span> Liquids that can be used to create energy

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel, ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.

Cetane number is an indicator of the combustion speed of diesel fuel and compression needed for ignition. It plays a similar role for diesel as octane rating does for gasoline. The CN is an important factor in determining the quality of diesel fuel, but not the only one; other measurements of diesel fuel's quality include energy content, density, lubricity, cold-flow properties and sulphur content.

A visbreaker is a processing unit in an oil refinery whose purpose is to reduce the quantity of residual oil produced in the distillation of crude oil and to increase the yield of more valuable middle distillates by the refinery. A visbreaker thermally cracks large hydrocarbon molecules in the oil by heating in a furnace to reduce its viscosity and to produce small quantities of light hydrocarbons.. The process name of "visbreaker" refers to the fact that the process reduces the viscosity of the residual oil. The process is non-catalytic.

Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion.

The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature. The higher the VI, the more stable the viscosity remains over temperature fluctuations. The VI was originally measured on a scale from 0 to 100; however, advancements in lubrication science have led to the development of oils with much higher VIs.

<span class="mw-page-title-main">Alcohol fuel</span>

Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.

The Calculated Ignition Index (CII) is an index of the ignition quality of residual fuel oil.

Cetane index is used as a substitute for the cetane number of diesel fuel. The cetane index is calculated based on the fuel's density and distillation range. There are two methods used, ASTM D976 and D4737. The older D976, or "two-variable equation" is outdated and should no longer be used for cetane number estimation. It is, however, still required by the United States Environmental Protection Agency (EPA) as an alternative method for satisfying its aromaticity requirement for diesel fuel. D4737 is the newest method and is sometimes referred to as "the four-variable equation". D4737 is the same method as ISO 4264. Cetane index in some crude oil assays is often referred to as Cetane calcule, while the cetane number is referred to as Cetane measure.

CCAI is an acronym that can refer to:

A Cetane Improver [′sē‚tān im′prüv·ər] is a chemical which has the effect of increasing a diesel fuel's Cetane number. A few examples are nitrates, nitroalkanes, nitrocarbonates and peroxides.

Dry milling of grain is mainly utilized to manufacture feedstock into consumer and industrial based products. This process is widely associated with the development of new bio-based associated by-products. The milling process separates the grain into four distinct physical components: the germ, flour, fine grits, and coarse grits. The separated materials are then reduced into food products utilized for human and animal consumption.

<span class="mw-page-title-main">Heavy fuel oil</span> Fuel oils of a tar-like consistency

Heavy Fuel Oil (HFO) is a category of fuel oils of a tar-like consistency. Also known as bunker fuel, or residual fuel oil, HFO is the result or remnant from the distillation and cracking process of petroleum. For this reason, HFO is contaminated with several different compounds including aromatics, sulfur and nitrogen, making emissions upon combustion more polluting compared to other fuel oils. HFO is predominantly used as a fuel source for marine vessel propulsion due to its relatively low cost compared to cleaner fuel sources such as distillates. The use and carriage of HFO on-board vessels presents several environmental concerns, namely the risk of oil spill and the emission of toxic compounds and particulates including black carbon. Presently, the use of HFOs is banned as a fuel source for ships travelling in the Antarctic as part of the International Maritime Organization's (IMO) International Code for Ships Operating in Polar Waters. For similar reasons, an HFO ban in Arctic waters is currently being considered.