Simple Features

Last updated

Simple Features (officially Simple Feature Access) is a set of standards that specify a common storage and access model of geographic features made of mostly two-dimensional geometries (point, line, polygon, multi-point, multi-line, etc.) used by geographic databases and geographic information systems. It is formalized by both the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO).

Contents

The ISO 19125 standard comes in two parts. Part 1, ISO 19125-1 (SFA-CA for "common architecture"), defines a model for two-dimensional simple features, with linear interpolation between vertices, defined in a hierarchy of classes; this part also defines representation of geometry in text and binary forms. Part 2 of the standard, ISO 19125-2 (SFA-SQL), defines a "SQL/MM" language binding API for SQL under the prefix "SF_". [1] The open access OGC standards cover additionally APIs for CORBA and OLE/COM, although these have lagged behind the SQL one and are not standardized by ISO. There are also adaptations to other languages covered below.

The ISO/IEC 13249-3 SQL/MM Spatial extends the Simple Features data model, originally based on straight-line segments, adding circular interpolations (e.g. circular arcs) and other features like coordinate transformations and methods for validating geometries, as well as Geography Markup Language support. [1]

Details

Part 1

The geometries are associated with spatial reference systems. The standard also specifies attributes, methods and assertions with the geometries, in the object-oriented style. In general, a 2D geometry is simple if it contains no self-intersection. The specification defines DE-9IM spatial predicates and several spatial operators that can be used to generate new geometries from existing geometries.

Part 2

Part 2 is a SQL binding to Part 1, providing a translation of the interface to non-object-oriented environments. For example, instead of a someGeometryObject.isEmpty() as in Part 1, SQL/MM uses a ST_IsEmpty(...) function in SQL.

Spatial

The spatial extension adds the datatypes "Circularstring", "CompoundCurve", "CurvePolygon", "PolyhedralSurface", the last of which is also included into the OGC standard. It also defines the SQL/MM versions of these types and operations on them.

Implementations

Direct implementations of Part 2 (SQL/MM) include:

Adaptations include:

GeoSPARQL is an OGC standard that is intended to allow geospatially-linked data representation and querying based on RDF and SPARQL by defining an ontology for geospatial reasoning supporting a small Simple Features (as well as DE-9IM and RCC8) RDFS/OWL vocabulary for GML and WKT literals. [16]

As of 2012, various NoSQL databases had very limited support for "anything more complex than a bounding box or proximity search". [3]

See also

Related Research Articles

<span class="mw-page-title-main">PostGIS</span> Geospatial extension for the PostgreSQL Database

PostGIS is an open source software program that adds support for geographic objects to the PostgreSQL object-relational database. PostGIS follows the Simple Features for SQL specification from the Open Geospatial Consortium (OGC).

<span class="mw-page-title-main">Geography Markup Language</span> XML grammar for geographical features

The Geography Markup Language (GML) is the XML grammar defined by the Open Geospatial Consortium (OGC) to express geographical features. GML serves as a modeling language for geographic systems as well as an open interchange format for geographic transactions on the Internet. Key to GML's utility is its ability to integrate all forms of geographic information, including not only conventional "vector" or discrete objects, but coverages and sensor data.

In computing, the Open Geospatial Consortium Web Feature Service (WFS) Interface Standard provides an interface allowing requests for geographical features across the web using platform-independent calls. One can think of geographical features as the "source code" behind a map, whereas the WMS interface or online tiled mapping portals like Google Maps return only an image, which end-users cannot edit or spatially analyze. The XML-based GML furnishes the default payload-encoding for transporting geographic features, but other formats like shapefiles can also serve for transport. In early 2006 the OGC members approved the OpenGIS GML Simple Features Profile. This profile is designed both to increase interoperability between WFS servers and to improve the ease of implementation of the WFS standard.

A GIS file format is a standard for encoding geographical information into a computer file, as a specialized type of file format for use in geographic information systems (GIS) and other geospatial applications. Since the 1970s, dozens of formats have been created based on various data models for various purposes. They have been created by government mapping agencies, GIS software vendors, standards bodies such as the Open Geospatial Consortium, informal user communities, and even individual developers.

A GIS software program is a computer program to support the use of a geographic information system, providing the ability to create, store, manage, query, analyze, and visualize geographic data, that is, data representing phenomena for which location is important. The GIS software industry encompasses a broad range of commercial and open-source products that provide some or all of these capabilities within various information technology architectures.

ISO/TC 211 is a standard technical committee formed within ISO, tasked with covering the areas of digital geographic information and geomatics. It is responsible for preparation of a series of International Standards and Technical Specifications numbered in the number range starting at ISO-19101. The Chair of the committee was 1994-2016: Olaf Østensen; during 2017-2018: Christina Wasström; and from 2019 Agneta Gren Engberg.

<span class="mw-page-title-main">Spatial reference system</span> System to specify locations on Earth

A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.

A spatial database is a general-purpose database that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data.

The Open Source Geospatial Foundation (OSGeo), is a non-profit non-governmental organization whose mission is to support and promote the collaborative development of open geospatial technologies and data. The foundation was formed in February 2006 to provide financial, organizational and legal support to the broader Free and open-source geospatial community. It also serves as an independent legal entity to which community members can contribute code, funding and other resources.

JTS Topology Suite is an open-source Java software library that provides an object model for Euclidean planar linear geometry together with a set of fundamental geometric functions. JTS is primarily intended to be used as a core component of vector-based geomatics software such as geographical information systems. It can also be used as a general-purpose library providing algorithms in computational geometry.

Oracle Spatial and Graph, formerly Oracle Spatial, is a free option component of the Oracle Database. The spatial features in Oracle Spatial and Graph aid users in managing geographic and location-data in a native type within an Oracle database, potentially supporting a wide range of applications — from automated mapping, facilities management, and geographic information systems (AM/FM/GIS), to wireless location services and location-enabled e-business. The graph features in Oracle Spatial and Graph include Oracle Network Data Model (NDM) graphs used in traditional network applications in major transportation, telcos, utilities and energy organizations and RDF semantic graphs used in social networks and social interactions and in linking disparate data sets to address requirements from the research, health sciences, finance, media and intelligence communities.

Well-known text (WKT) is a text markup language for representing vector geometry objects. A binary equivalent, known as well-known binary (WKB), is used to transfer and store the same information in a more compact form convenient for computer processing but that is not human-readable. The formats were originally defined by the Open Geospatial Consortium (OGC) and described in their Simple Feature Access. The current standard definition is in the ISO/IEC 13249-3:2016 standard.

Geospatial metadata is a type of metadata applicable to geographic data and information. Such objects may be stored in a geographic information system (GIS) or may simply be documents, data-sets, images or other objects, services, or related items that exist in some other native environment but whose features may be appropriate to describe in a (geographic) metadata catalog.

The Open Geospatial Consortium Web Coverage Service Interface Standard (WCS) defines Web-based retrieval of coverages – that is, digital geospatial information representing space/time-varying phenomena.

<span class="mw-page-title-main">SpatiaLite</span>

SpatiaLite is a spatial extension to SQLite, providing vector geodatabase functionality. It is similar to PostGIS, Oracle Spatial, and SQL Server with spatial extensions, although SQLite/SpatiaLite aren't based on client-server architecture: they adopt a simpler personal architecture. i.e. the whole SQL engine is directly embedded within the application itself: a complete database simply is an ordinary file which can be freely copied and transferred from one computer/OS to a different one without any special precaution.

The Spatial Archive and Interchange Format was defined in the early 1990s as a self-describing, extensible format designed to support interoperability and storage of geospatial data.

<span class="mw-page-title-main">DE-9IM</span>

The Dimensionally Extended 9-Intersection Model (DE-9IM) is a topological model and a standard used to describe the spatial relations of two regions, in geometry, point-set topology, geospatial topology, and fields related to computer spatial analysis. The spatial relations expressed by the model are invariant to rotation, translation and scaling transformations.

<span class="mw-page-title-main">Open Geospatial Consortium</span> Standards organization

The Open Geospatial Consortium (OGC), an international voluntary consensus standards organization for geospatial content and location-based services, sensor web and Internet of Things, GIS data processing and data sharing. It originated in 1994 and involves more than 500 commercial, governmental, nonprofit and research organizations in a consensus process encouraging development and implementation of open standards.

GeoSPARQL is a standard for representation and querying of geospatial linked data for the Semantic Web from the Open Geospatial Consortium (OGC). The definition of a small ontology based on well-understood OGC standards is intended to provide a standardized exchange basis for geospatial RDF data which can support both qualitative and quantitative spatial reasoning and querying with the SPARQL database query language.

Well-known text representation of coordinate reference systems is a text markup language for representing spatial reference systems and transformations between spatial reference systems. The formats were originally defined by the Open Geospatial Consortium (OGC) and described in their Simple Feature Access and Well-known text representation of coordinate reference systems specifications. The current standard definition is ISO 19162:2019. This supersedes ISO 19162:2015.

References

  1. 1 2 Wolfgang Kresse; David M. Danko (2011). Springer Handbook of Geographic Information . Springer. pp.  81–83. ISBN   978-3-540-72678-4.
  2. "MySQL 5.1 documentation on Spatial extensions". mysql.com. Retrieved 2 April 2018.
  3. 1 2 Frank Hardisty (Fall 2012). "Penn State Geography 583: Geospatial System Analysis and Design. Databases".
  4. "MySQL :: MySQL 5.6 Reference Manual :: 12.15.9 Functions That Test Spatial Relations Between Geometry Objects". dev.mysql.com. Retrieved 2 April 2018.
  5. "GeoSpatial - MonetDB". 4 March 2014.
  6. 1 2 3 Wolfgang Kresse; David M. Danko (2011). Springer Handbook of Geographic Information . Springer. pp.  105–106. ISBN   978-3-540-72678-4.
  7. "SpatiaLite: SpatiaLite". www.gaia-gis.it. Retrieved 2 April 2018.
  8. Ravikanth V. Kothuri; Euro Beinat; Albert Godfrind (2004). Pro Oracle Spatial. Apress. p. 65. ISBN   978-1-59059-383-7.
  9. Alastair Aitchison (2012). Pro Spatial with SQL Server 2012. Apress. pp. 21–23. ISBN   978-1-4302-3491-3.
  10. http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01964.1602/doc/html/saiq-standards-compatibility-spatial.html SAP Sybase IQ support for spatial data
  11. http://help.sap.com/saphelp_hanaplatform/helpdata/en/7a/2f4266787c1014a9b6ab6cf937f8ac/content.htm?frameset=/en/7a/2d11d7787c1014ac3a8663250814c2/frameset.htm&current_toc=/en/99/d10e4fdaaf41588480a43478e840d5/plain.htm&node_id=12 SAP HANA Spatial Reference: Supported Import and Export Formats for Spatial Data
  12. Pebesma, Edzer; Bivand, Roger; Cook, Ian; Keitt, Tim; Sumner, Michael; Lovelace, Robin; Wickham, Hadley; Ooms, Jeroen; Racine, Etienne (22 March 2018). "sf: Simple Features for R" . Retrieved 2 April 2018 via R-Packages.
  13. "FAQ: What is this OGR stuff?". www.gdal.org. Retrieved 2 April 2018.
  14. Shashi Shekhar; Hui Xiong (2007). Encyclopedia of GIS. Springer. pp. 235–236. ISBN   978-0-387-30858-6.
  15. "geo_types - Rust". docs.rs. Retrieved 2023-03-19.
  16. Battle, Robert; Kolas, Dave (2012). "Enabling the Geospatial Semantic Web with Parliament and GeoSPARQL" (PDF). Semantic Web . IOS Press. 3 (4): 355–370. doi:10.3233/SW-2012-0065 . Retrieved 21 November 2012.

Standard documents