This article includes a list of general references, but it lacks sufficient corresponding inline citations .(November 2016) |
The region connection calculus (RCC) is intended to serve for qualitative spatial representation and reasoning. RCC abstractly describes regions (in Euclidean space, or in a topological space) by their possible relations to each other. RCC8 consists of 8 basic relations that are possible between two regions:
From these basic relations, combinations can be built. For example, proper part (PP) is the union of TPP and NTPP.
RCC is governed by two axioms. [1]
The two axioms describe two features of the connection relation, but not the characteristic feature of the connect relation. [2] For example, we can say that an object is less than 10 meters away from itself and that if object A is less than 10 meters away from object B, object B will be less than 10 meters away from object A. So, the relation 'less-than-10-meters' also satisfies the above two axioms, but does not talk about the connection relation in the intended sense of RCC.
The composition table of RCC8 are as follows:
R2(b, c)→ R1(a, b)↓ | DC | EC | PO | TPP | NTPP | TPPi | NTPPi | EQ |
---|---|---|---|---|---|---|---|---|
DC | * | DC, EC, PO, TPP, NTPP | DC, EC, PO, TPP, NTPP | DC, EC, PO, TPP, NTPP | DC, EC, PO, TPP, NTPP | DC | DC | DC |
EC | DC, EC, PO, TPPi, NTPPi | DC, EC, PO, TPP, TPPi, EQ | DC, EC, PO, TPP, NTPP | EC, PO, TPP, NTPP | PO, TPP, NTPP | DC, EC | DC | EC |
PO | DC, EC, PO, TPPi, NTPPi | DC, EC, PO, TPPi, NTPPi | * | PO, TPP, NTPP | PO, TPP, NTPP | DC, EC, PO, TPPi, NTPPi | DC, EC, PO, TPPi, NTPPi | PO |
TPP | DC | DC, EC | DC, EC, PO, TPP, NTPP | TPP, NTPP | NTPP | DC, EC, PO, TPP, TPPi, EQ | DC, EC, PO, TPPi, NTPPi | TPP |
NTPP | DC | DC | DC, EC, PO, TPP, NTPP | NTPP | NTPP | DC, EC, PO, TPP, NTPP | * | NTPP |
TPPi | DC, EC, PO, TPPi, NTPPi | EC, PO, TPPi, NTPPi | PO, TPPi, NTPPi | PO, TPP, TPPi, EQ | PO, TPP, NTPP | TPPi, NTPPi | NTPPi | TPPi |
NTPPi | DC, EC, PO, TPPi, NTPPi | PO, TPPi, NTPPi | PO, TPPi, NTPPi | PO, TPPi, NTPPi | PO, TPP, NTPP, TPPi, NTPPi, EQ | NTPPi | NTPPi | NTPPi |
EQ | DC | EC | PO | TPP | NTPP | TPPi | NTPPi | EQ |
Usage example: if a TPP b and b EC c, (row 4, column 2) of the table says that a DC c or a EC c.
The RCC8 calculus is intended for reasoning about spatial configurations. Consider the following example: two houses are connected via a road. Each house is located on an own property. The first house possibly touches the boundary of the property; the second one surely does not. What can we infer about the relation of the second property to the road?
The spatial configuration can be formalized in RCC8 as the following constraint network:
house1 DC house2 house1 {TPP, NTPP} property1 house1 {DC, EC} property2 house1 EC road house2 { DC, EC } property1 house2 NTPP property2 house2 EC road property1 { DC, EC } property2 road { DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi } property1 road { DC, EC, TPP, TPPi, PO, EQ, NTPP, NTPPi } property2
Using the RCC8 composition table and the path-consistency algorithm, we can refine the network in the following way:
road { PO, EC } property1 road { PO, TPP } property2
That is, the road either overlaps (PO) property2, or is a tangential proper part of it. But, if the road is a tangential proper part of property2, then the road can only be externally connected (EC) to property1. That is, road PO property1 is not possible when road TPP property2. This fact is not obvious, but can be deduced once we examine the consistent "singleton-labelings" of the constraint network. The following paragraph briefly describes singleton-labelings.
First, we note that the path-consistency algorithm will also reduce the possible properties between house2 and property1 from { DC, EC } to just DC. So, the path-consistency algorithm leaves multiple possible constraints on 5 of the edges in the constraint network. Since each of the multiple constraints involves 2 constraints, we can reduce the network to 32 (25) possible unique constraint networks, each containing only single labels on each edge ("singleton labelings"). However, of the 32 possible singleton labelings, only 9 are consistent. (See qualreas for details.) Only one of the consistent singleton labelings has the edge road TPP property2 and the same labeling includes road EC property1.
Other versions of the region connection calculus include RCC5 (with only five basic relations - the distinction whether two regions touch each other are ignored) and RCC23 (which allows reasoning about convexity).
RCC8 has been partially[ clarification needed ] implemented in GeoSPARQL as described below:
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.
Knowledge representation and reasoning is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge, in order to design formalisms that make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning.
Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle. Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.
A conceptual graph (CG) is a formalism for knowledge representation. In the first published paper on CGs, John F. Sowa used them to represent the conceptual schemas used in database systems. The first book on CGs applied them to a wide range of topics in artificial intelligence, computer science, and cognitive science.
Mereology is the philosophical study of part-whole relationships, also called parthood relationships. As a branch of metaphysics, mereology examines the connections between parts and their wholes, exploring how components interact within a system. This theory has roots in ancient philosophy, with significant contributions from Plato, Aristotle, and later, medieval and Renaissance thinkers like Thomas Aquinas and John Duns Scotus. Mereology gained formal recognition in the 20th century through the pioneering works of Polish logician Stanisław Leśniewski, who introduced it as part of a comprehensive framework for logic and mathematics, and coined the word "mereology". The field has since evolved to encompass a variety of applications in ontology, natural language semantics, and the cognitive sciences, influencing our understanding of structures ranging from linguistic constructs to biological systems.
In theoretical computer science, the π-calculus is a process calculus. The π-calculus allows channel names to be communicated along the channels themselves, and in this way it is able to describe concurrent computations whose network configuration may change during the computation.
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica.
The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.
In formal ontology, a branch of metaphysics, and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts.
The event calculus is a logical theory for representing and reasoning about events and about the way in which they change the state of some real or artificial world. It deals both with action events, which are performed by agents, and with external events, which are outside the control of any agent.
Spatial–temporal reasoning is an area of artificial intelligence that draws from the fields of computer science, cognitive science, and cognitive psychology. The theoretic goal—on the cognitive side—involves representing and reasoning spatial-temporal knowledge in mind. The applied goal—on the computing side—involves developing high-level control systems of automata for navigating and understanding time and space.
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation.
In mathematics, point-free geometry is a geometry whose primitive ontological notion is region rather than point. Two axiomatic systems are set out below, one grounded in mereology, the other in mereotopology and known as connection theory.
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.
Diagrammatic reasoning is reasoning by means of visual representations. The study of diagrammatic reasoning is about the understanding of concepts and ideas, visualized with the use of diagrams and imagery instead of by linguistic or algebraic means.
Allen's interval algebra is a calculus for temporal reasoning that was introduced by James F. Allen in 1983.
The Dimensionally Extended 9-Intersection Model (DE-9IM) is a topological model and a standard used to describe the spatial relations of two regions, in geometry, point-set topology, geospatial topology, and fields related to computer spatial analysis. The spatial relations expressed by the model are invariant to rotation, translation and scaling transformations.
Reinhard Moratz is a German science educator, academic and researcher. He is Ausserplanmässiger Professor at the University of Münster’s Institute for Geoinformatics. He has worked on spatial cognition and reasoning, qualitative theories of low-dimensional entities like straight line segments and oriented points, artificial intelligence and specifically the OPRA calculus. His research is based on computational models that account for the varying reference frames used in giving verbal instructions about navigation.