Observations and Measurements

Last updated

Observations and Measurements (O&M) is an international standard [1] which defines a conceptual schema encoding for observations, and for features involved in sampling when making observations. While the O&M standard was developed in the context of geographic information systems, the model is derived from generic patterns proposed by Fowler and Odell, [2] and is not limited to geospatial information. O&M is one of the core standards in the OGC Sensor Web Enablement suite, providing the response model for Sensor Observation Service [3] (SOS).

Contents

Observation schema

The core of the standard provides the observation schema. An observation is an act that results in the estimation of the value of a feature property, and involves application of a specified procedure, such as a sensor, instrument, algorithm or process chain. The procedure may be applied in situ, remotely, or ex situ with respect to the sampling location. Use of a common model for observation metadata allows data to be combined unambiguously, across discipline boundaries. Observation details are also important for data discovery and for data quality estimation. An observation is defined in terms of the set of properties that support these applications.

O&M defines a core set of properties for an observation:

The key to the model is the division of the observation and its feature of interest, separating the concerns so that the appropriate information associated with the description of each object. This allows a unified treatment of in situ, ex situ, and remote-sensed observations. The observation schema may also be understood as a corollary of the General Feature Model from ISO 19101, [4] providing metadata associated with the estimation of the value of a feature property. The Observation model takes a user-centric viewpoint, emphasizing the semantics of the feature-of-interest and its properties. This contrasts with sensor oriented models such as SensorML, which take a process – and thus provider-centric viewpoint.

Many observations are made to detect the variation of some property in the natural environment, expressed as a spatial function or field, also known as a coverage (ISO 19123:2005 [5] ). The relationship between observations, features and coverages is explained, in the context of ocean observations and modeling, in a report for GEOSS Architecture Implementation Pilot 3. [6]

Sampling features

The standard also provides a schema for Sampling Features. Observations commonly involve sampling of the ultimate feature of interest. Specific sampling features, such as station, specimen, transect, section, are used in many application domains, and common processing and visualization tools are used. The standard defines a common set of sampling feature types classified primarily by spatial dimension, as well as samples for ex situ observations. The schema includes relationships between sampling features (sub-sampling, derived samples).

The core properties of sampling features are:

Implementations

An XML encoding (GML Application Schema) is provided for transfer of data: [7]

A JSON encoding is provided for transfer of data: [8]

An explicit OWL representation of O&M is available: [9]

The W3C Semantic Sensor Network Ontology provides an updated OWL implementation that covers most of O&M . [10] [11]

Version 2.0 of the Observations Data Model ("ODM2"), [12] developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) [13] and the Critical Zone Observatory project, adapts O&M.

O&M is also published as a topic of the Open Geospatial Consortium Abstract Specification. [14]

The previous version of O&M (Version 1) factored the model into two documents: Part 1 described the Observation Schema, and Part 2 described Sampling Features.

See also

Related Research Articles

<span class="mw-page-title-main">Semantic Web</span> Extension of the Web to facilitate data exchange

The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable.

<span class="mw-page-title-main">Geography Markup Language</span> XML grammar for geographical features

The Geography Markup Language (GML) is the XML grammar defined by the Open Geospatial Consortium (OGC) to express geographical features. GML serves as a modeling language for geographic systems as well as an open interchange format for geographic transactions on the Internet. Key to GML's utility is its ability to integrate all forms of geographic information, including not only conventional "vector" or discrete objects, but coverages and sensor data.

A coverage is the digital representation of some spatio-temporal phenomenon. ISO 19123 provides the definition:

The Web Ontology Language (OWL) is a family of knowledge representation languages for authoring ontologies. Ontologies are a formal way to describe taxonomies and classification networks, essentially defining the structure of knowledge for various domains: the nouns representing classes of objects and the verbs representing relations between the objects.

A GIS file format is a standard for encoding geographical information into a computer file, as a specialized type of file format for use in geographic information systems (GIS) and other geospatial applications. Since the 1970s, dozens of formats have been created based on various data models for various purposes. They have been created by government mapping agencies, GIS software vendors, standards bodies such as the Open Geospatial Consortium, informal user communities, and even individual developers.

A geocode is a code that represents a geographic entity. It is a unique identifier of the entity, to distinguish it from others in a finite set of geographic entities. In general the geocode is a human-readable and short identifier.

ISO/TC 211 is a standard technical committee formed within ISO, tasked with covering the areas of digital geographic information and geomatics. It is responsible for preparation of a series of International Standards and Technical Specifications numbered in the number range starting at ISO-19101. The Chair of the committee was 1994-2016: Olaf Østensen; during 2017-2018: Christina Wasström; and from 2019 Agneta Gren Engberg.

Simple Features is a set of standards that specify a common storage and access model of geographic features made of mostly two-dimensional geometries used by geographic databases and geographic information systems. It is formalized by both the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO).

SensorML is an approved Open Geospatial Consortium standard and an XML encoding for describing sensors and measurement processes. SensorML can be used to describe a wide range of sensors, including both dynamic and stationary platforms and both in-situ and remote sensors.

The ISO 15926 is a standard for data integration, sharing, exchange, and hand-over between computer systems.

Oracle Spatial and Graph, formerly Oracle Spatial, is a free option component of the Oracle Database. The spatial features in Oracle Spatial and Graph aid users in managing geographic and location-data in a native type within an Oracle database, potentially supporting a wide range of applications — from automated mapping, facilities management, and geographic information systems (AM/FM/GIS), to wireless location services and location-enabled e-business. The graph features in Oracle Spatial and Graph include Oracle Network Data Model (NDM) graphs used in traditional network applications in major transportation, telcos, utilities and energy organizations and RDF semantic graphs used in social networks and social interactions and in linking disparate data sets to address requirements from the research, health sciences, finance, media and intelligence communities.

Geospatial metadata is a type of metadata applicable to geographic data and information. Such objects may be stored in a geographic information system (GIS) or may simply be documents, data-sets, images or other objects, services, or related items that exist in some other native environment but whose features may be appropriate to describe in a (geographic) metadata catalog.

A feature, in the context of geography and geographic information science, is something that exists at a moderate to global scale at a location in the space and scale of relevance to geography; that is, at or near the surface of Earth. It is an item of geographic information, and may be represented in maps, geographic information systems, remote sensing imagery, statistics, and other forms of geographic discourse. Such representations of features consist of descriptions of their inherent nature, their spatial form and location, and their characteristics or properties.

The Semantic Sensor Web (SSW) is a marriage of sensor web and semantic Web technologies. The encoding of sensor descriptions and sensor observation data with Semantic Web languages enables more expressive representation, advanced access, and formal analysis of sensor resources. The SSW annotates sensor data with spatial, temporal, and thematic semantic metadata. This technique builds on current standardization efforts within the Open Geospatial Consortium's Sensor Web Enablement (SWE) and extends them with Semantic Web technologies to provide enhanced descriptions and access to sensor data.

The Spatial Archive and Interchange Format was defined in the early 1990s as a self-describing, extensible format designed to support interoperability and storage of geospatial data.

<span class="mw-page-title-main">Open Geospatial Consortium</span> Standards organization

The Open Geospatial Consortium (OGC), an international voluntary consensus standards organization for geospatial content and location-based services, sensor web and Internet of Things, GIS data processing and data sharing. It originated in 1994 and involves more than 500 commercial, governmental, nonprofit and research organizations in a consensus process encouraging development and implementation of open standards.

The Sensor Observation Service (SOS) is a web service to query real-time sensor data and sensor data time series and is part of the Sensor Web. The offered sensor data consists of data directly from the sensors, which are encoded in the Sensor Model Language (SensorML), and the measured values in the Observations and Measurements encoding format. The web service as well as both file formats are open standards and specifications of the same name defined by the Open Geospatial Consortium (OGC).

WaterML is a technical standard and information model used to represent hydrological time series structures. The current version is WaterML 2.0, released an open standard of the Open Geospatial Consortium (OGC).

GeoSPARQL is a standard for representation and querying of geospatial linked data for the Semantic Web from the Open Geospatial Consortium (OGC). The definition of a small ontology based on well-understood OGC standards is intended to provide a standardized exchange basis for geospatial RDF data which can support both qualitative and quantitative spatial reasoning and querying with the SPARQL database query language.

SensorThings API is an Open Geospatial Consortium (OGC) standard providing an open and unified framework to interconnect IoT sensing devices, data, and applications over the Web. It is an open standard addressing the syntactic interoperability and semantic interoperability of the Internet of Things. It complements the existing IoT networking protocols such CoAP, MQTT, HTTP, 6LowPAN. While the above-mentioned IoT networking protocols are addressing the ability for different IoT systems to exchange information, OGC SensorThings API is addressing the ability for different IoT systems to use and understand the exchanged information. As an OGC standard, SensorThings API also allows easy integration into existing Spatial Data Infrastructures or Geographic Information Systems.

References

  1. Cox, Simon Jonathan David (2011). "ISO 19156:2011 Geographic information – Observations and measurements". International Organization for Standardization. doi:10.13140/2.1.1142.3042 . Retrieved 2011-12-20.{{cite journal}}: Cite journal requires |journal= (help)
  2. Fowler, Martin (1997). Analysis Patterns: Reusable Object Models . Addison-Wesley. pp.  35–55. ISBN   978-0-201-89542-1.
  3. "OGC Standard – Sensor Observation Service". 2008. Retrieved 2008-10-29.
  4. "ISO 19101: Geographic information – Reference model". 2002. Retrieved 2008-10-29.
  5. "ISO 19123: Geographic information – Schema for coverage geometry and functions". 2005. Retrieved 2010-11-27.
  6. Woolf, Andrew; Cox, Simon J D.; Portele, Clemens (2010). "Data Harmonization - GEOSS AIP-3 Contribution" (PDF). doi:10.13140/RG.2.1.1840.4569 . Retrieved 2010-11-27.{{cite journal}}: Cite journal requires |journal= (help)
  7. S J D Cox (2010). "OGC Observations and Measurements - XML Implementation". Open Geospatial Consortium Implementation Standard. pp. 66 + ix. Retrieved 2015-12-18.
  8. S J D Cox; P Taylor (2015). "OGC Observations and Measurements – JSON implementation". Open Geospatial Consortium Discussion Paper. p. 46. Retrieved 2015-12-18.
  9. S J D Cox (2016). "Ontology for observations and sampling features, with alignments to existing models". Semantic Web – Interoperability, Usability, Applicability. accepted (3): 453–470. doi:10.3233/SW-160214 . Retrieved 2015-12-18.
  10. Armin Haller; Krzysztof Janowicz; Simon Cox; Maxime Lefrançois; Kerry Taylor; Danh Le Phuoc; Josh Lieberman; Raúl García-Castro; Rob Atkinson; Claus Stadler (2018). "The Modular SSN Ontology: A Joint W3C and OGC Standard Specifying the Semantics of Sensors, Observations, Sampling, and Actuation". Semantic Web – Interoperability, Usability, Applicability. 10: 9–32. doi:10.3233/SW-180320. S2CID   21688777 . Retrieved 2018-09-06.
  11. Krzysztof Janowicz; Armin Haller; Simon J.D.Cox; DanhLe Phuoc; Maxime Lefrançois (2018). "SOSA: A lightweight ontology for sensors, observations, samples, and actuators". Semantic Web – Interoperability, Usability, Applicability. 56: 1–10. arXiv: 1805.09979 . Bibcode:2018arXiv180509979J. doi:10.1016/j.websem.2018.06.003. S2CID   44112250.
  12. Horsburgh, J. S.; Aufdenkampe, A. K.; Mayorga, E.; Lehnert, K. A.; Hsu, L.; Song, L.; Spackman Jones, A.; Damiano, S. G.; Tarboton, D. G.; Valentine, D.; Zaslavsky, I.; Whitenack, T. (2016). "Observations Data Model 2: A community information model for spatially discrete Earth observations". Environmental Modelling & Software. 79: 55–74. doi: 10.1016/j.envsoft.2016.01.010 .
  13. "CUAHSI" . Retrieved 8 March 2013.
  14. "OGC Abstract Specification Topic 20: Observations and measurements". 2010. Retrieved 2010-11-22.