ISO 31-0

Last updated

ISO 31-0 is the introductory part of international standard ISO 31 on quantities and units. It provides guidelines for using physical quantities, quantity and unit symbols, and coherent unit systems, especially the SI. It was intended for use in all fields of science and technology and is augmented by more specialized conventions defined in other parts of the ISO 31 standard. ISO 31-0 was withdrawn on 17 November 2009. It is superseded by ISO 80000-1. Other parts of ISO 31 have also been withdrawn and replaced by parts of ISO 80000.

Contents

Scope

ISO 31 covers physical quantities used for the quantitative description of physical phenomena. The presentation here is a summary of some of the detailed guidelines and examples given in the standard.

Quantities and units

Physical quantities can be grouped into mutually comparable categories. For example, length, width, diameter and wavelength are all in the same category, that is they are all quantities of the same kind. One particular example of such a quantity can be chosen as a reference quantity, called the unit, and then all other quantities in the same category can be expressed in terms of this unit, multiplied by a number called the numerical value. For example, if we write

the wavelength is λ = 6.982 × 107 m

then "λ" is the symbol for the physical quantity (wavelength), "m" is the symbol for the unit (metre), and "6.982 × 107" is the numerical value of the wavelength in metres.

More generally, we can write

A = {A} ⋅ [A]

where A is the symbol for the quantity, {A} symbolizes the numerical value of A, and [A] represents the corresponding unit in which A is expressed here. Both the numerical value and the unit symbol are factors, and their product is the quantity. A quantity itself has no inherent particular numerical value or unit; as with any product, there are many different combinations of numerical value and unit that lead to the same quantity (e.g., A = 300 ⋅ m = 0.3 ⋅ km = ...). This ambiguity makes the {A} and [A] notations useless, unless they are used together.

The value of a quantity is independent of the unit chosen to represent it. It must be distinguished from the numerical value of the quantity that occurs when the quantity is expressed in a particular unit. The above curly-bracket notation could be extended with a unit-symbol index to clarify this dependency, as in {λ}m = 6.982 × 107 or equivalently {λ}nm = 698.2. In practice, where it is necessary to refer to the numerical value of a quantity expressed in a particular unit, it is notationally more convenient to simply divide the quantity through that unit, as in

λ/m = 6.982 × 107

or equivalently

λ/nm = 698.2.

This is a particularly useful and widely used notation for labelling the axes of graphs or for the headings of table columns, where repeating the unit after each numerical value can be typographically inconvenient.

Typographic conventions

Symbols for quantities

Names and symbols for units

Numbers

See Sect. 3.3 of the Standard text.

For example, one divided by two (one half) may be written as 0.5 or 0,5.
For example, one million (1000000) may be written as 1000000.

Expressions

Mathematical signs and symbols

A comprehensive list of internationally standardized mathematical symbols and notations can be found in ISO 31-11.

See also

Related Research Articles

A binary prefix is a unit prefix that indicates a multiple of a unit of measurement by an integer power of two. The most commonly used binary prefixes are kibi (symbol Ki, meaning 210 = 1024), mebi (Mi, 220 = 1048576), and gibi (Gi, 230 = 1073741824). They are most often used in information technology as multipliers of bit and byte, when expressing the capacity of storage devices or the size of computer files.

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the luminous efficiency function, the model of the sensitivity of the human eye to different wavelengths, standardized by the CIE and ISO. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

In mathematics and computing, the hexadecimal numeral system is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9, and "A"–"F" to represent decimal values from ten to fifteen.

<span class="mw-page-title-main">ISO 8601</span> International standards for dates and times

ISO 8601 is an international standard covering the worldwide exchange and communication of date and time-related data. It is maintained by the International Organization for Standardization (ISO) and was first published in 1988, with updates in 1991, 2000, 2004, and 2019, and an amendment in 2022. The standard provides a well-defined, unambiguous method of representing calendar dates and times in worldwide communications, especially to avoid misinterpreting numeric dates and times when such data is transferred between countries with different conventions for writing numeric dates and times.

<span class="mw-page-title-main">Physical quantity</span> Measurable property of a material or system

A physical quantity is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol. Quantities that are vectors have, besides numerical value and unit, direction or orientation in space.

<span class="mw-page-title-main">International System of Units</span> Modern form of the metric system

The International System of Units, internationally known by the abbreviation SI, is the modern form of the metric system and the world's most widely used system of measurement. Coordinated by the International Bureau of Weights and Measures it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce.

A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre.

Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form, since to do so would require writing out an inconveniently long string of digits. It may be referred to as scientific form or standard index form, or standard form in the United Kingdom. This base ten notation is commonly used by scientists, mathematicians, and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators, it is usually known as "SCI" display mode.

<span class="mw-page-title-main">Decimal separator</span> Numerical symbol

A decimal separator is a symbol used to separate the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol also affects the choice of symbol for the thousands separator used in digit grouping.

The backslash\ is a mark used mainly in computing and mathematics. It is the mirror image of the common slash /. It is a relatively recent mark, first documented in the 1930s. It is sometimes called a hack, whack, escape, reverse slash, slosh, downwhack, backslant, backwhack, bash, reverse slant, reverse solidus, and reversed virgule.

The division sign is a mathematical symbol consisting of a short horizontal line with a dot above and another dot below, used in Anglophone countries to indicate the operation of division. This usage, though widespread in some countries, is not universal and the symbol has a different meaning in other countries. Its use to denote division is not recommended in the ISO 80000-2 standard for mathematical notation.

Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way.

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

ISO 31 is a superseded international standard concerning physical quantities, units of measurement, their interrelationships and their presentation. It was revised and replaced by ISO/IEC 80000.

<span class="mw-page-title-main">ISO 6709</span> International standard for representation of geographic location

ISO 6709, Standard representation of geographic point location by coordinates, is the international standard for representation of latitude, longitude and altitude for geographic point locations.

The degree symbol or degree sign, °, is a glyph or symbol that is used, among other things, to represent degrees of arc, hours, degrees of temperature or alcohol proof. The symbol consists of a small superscript circle.

IEEE 1541-2002 is a standard issued in 2002 by the Institute of Electrical and Electronics Engineers (IEEE) concerning the use of prefixes for binary multiples of units of measurement related to digital electronics and computing. IEEE 1541-2021 revises and supersedes IEEE 1541–2002, which is 'inactive'.

ISO 80000 or IEC 80000, Quantities and units, is an international standard describing the International System of Quantities (ISQ). It was developed and promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). It serves as a style guide for using physical quantities and units of measurement, formulas involving them, and their corresponding units, in scientific and educational documents for worldwide use. The ISO/IEC 80000 family of standards was completed with the publication of the first edition of Part 1 in November 2009.

<span class="mw-page-title-main">International System of Quantities</span> System of quantities used in science and their interrelationships

The International System of Quantities (ISQ) is a standard system of quantities used in physics and in modern science in general. It includes basic quantities such as length and mass and the relationships between those quantities. This system underlies the International System of Units (SI) but does not itself determine the units of measurement used for the quantities.

The RKM code, also referred to as "letter and numeral code for resistance and capacitance values and tolerances", "letter and digit code for resistance and capacitance values and tolerances", or informally as "R notation" is a notation to specify resistor and capacitor values defined in the international standard IEC 60062 since 1952. Other standards including DIN 40825 (1973), BS 1852 (1975), IS 8186 (1976), and EN 60062 (1993) have also accepted it. The updated IEC 60062:2016, amended in 2019, comprises the most recent release of the standard.

References

  1. "Resolution 10", 22nd General Conference on Weights and Measures, BIPM.
  2. Baum, Michael (22 November 2006). " Brief reference to the history | Decimals Score a Point on International Standards ". NIST . Archived from the original on 27 November 2006. Retrieved 17 November 2018. Until recently, the rule at the International Organization for Standardization (ISO—the world's largest developer of standards) and the International Electrotechnical Commission (IEC—the leading global electrical and electronic standards organization) was that all numbers with a decimal part must be written in formal documents with a comma decimal separator, the prevailing fashion in Europe. The constant pi, for example, starts 3,141 592 653.

Bibliography