The International Article Number (also known as European Article Number or EAN) is a standard describing a barcode symbology and numbering system used in global trade to identify a specific retail product type, in a specific packaging configuration, from a specific manufacturer. The standard has been subsumed in the Global Trade Item Number standard from the GS1 organization; the same numbers can be referred to as GTINs and can be encoded in other barcode symbologies, defined by GS1. EAN barcodes are used worldwide for lookup at retail point of sale, but can also be used as numbers for other purposes such as wholesale ordering or accounting. These barcodes only represent the digits 0–9, unlike some other barcode symbologies which can represent additional characters.
The most commonly used EAN standard is the thirteen-digit EAN-13, a superset of the original 12-digit Universal Product Code (UPC-A) standard developed in 1970 by George J. Laurer. [1] An EAN-13 number includes a 3-digit GS1 prefix (indicating country of registration or special type of product). A prefix with a first digit of "0" indicates a 12-digit UPC-A code follows. A prefix with first two digits of "45" or "49" indicates a Japanese Article Number (JAN) follows.
The less commonly used 8-digit EAN-8 barcode was introduced for use on small packages, where EAN-13 would be too large. 2-digit EAN-2 and 5-digit EAN-5 are supplemental barcodes, placed on the right-hand side of EAN-13 or UPC. These are generally used in periodicals, like magazines [2] and books, [3] to indicate the current year's issue number and in weighed products like food, to indicate the manufacturer's suggested retail price.
The 13-digit EAN-13 number consists of four components: [4]
The first three digits of the EAN-13 (GS1 Prefix) usually identify the GS1 Member Organization which the manufacturer has joined (not necessarily where the product is actually made). [6] Note that EAN-13 codes beginning with 0 are actually 12-digit UPC codes with prepended 0 digit. In recent years,[ when? ] more products sold by retailers outside the United States and Canada have been using EAN-13 codes beginning with 0, since they were generated by GS1-US.
The 020-029 GS1 Prefixes are worth a special mention. GS1 defines this as being available for retailer internal use (or internal use by other types of business). Some retailers use this for proprietary (own brand or unbranded) products, although many retailers obtain their own manufacturer's code for their own brands. Other retailers use at least part of this prefix for products which are packaged in store, for example, items weighed and served over a counter for a customer. In these cases, the barcode may encode a price, quantity or weight along with a product identifier – in a retailer defined way. The product identifier may be one assigned by the Produce Electronic Identification Board (PEIB) or may be retailer assigned. Retailers who have historically used UPC barcodes tend to use GS1 prefixes starting with "02" for store-packaged products.[ citation needed ]
The EAN "country code" 978 (and later 979) has been allocated since the 1980s to reserve a Unique Country Code (UCC) prefix for EAN identifiers of published books, regardless of country of origin, so that the EAN space can catalog books by ISBNs [3] rather than maintaining a redundant parallel numbering system. This is informally known as "Bookland". The prefix 979 with first digit 0 is used for International Standard Music Number (ISMN) and the prefix 977 indicates International Standard Serial Number (ISSN).
The manufacturer code is a unique code assigned to each manufacturer by the numbering authority indicated by the GS1 Prefix. All products produced by a given company will use the same manufacturer code. EAN-13 uses what are called "variable-length manufacturer codes". Assigning fixed-length 5-digit manufacturer codes, as the UCC has done until recently, means that each manufacturer can have up to 99,999 product codes.(9,999 for 3 digit GS1 prefix's) Many manufacturers do not have that many products, which means hundreds or even thousands of potential product codes are being wasted on manufacturers that only have a few products. Thus if a potential manufacturer knows that it is only going to produce a few products, EAN-13 may issue it a longer manufacturer code, leaving less space for the product code. This results in more efficient use of the available manufacturer and product codes. [7]
In ISBN and ISSN, this component is used to identify the language in which the publication was issued and managed by a transnational agency covering several countries, or to identify the country where the legal deposits are made by a publisher registered with a national agency, and it is further subdivided any allocating subblocks for publishers; many countries have several prefixes allocated in the ISSN and ISBN registries.
The product code is assigned by the manufacturer. The product code immediately follows manufacturer code. The total length of manufacturer code plus product code should be 9 or 10 digits depending on the length of country code (2–3 digits).
In ISBN, ISMN and ISSN, it uniquely identifies the publication from the same publisher; it should be used and allocated by the registered publisher in order to avoid creating gaps; however it happens that a registered book or serial never gets published and sold.
The check digit is an additional digit, used to verify that a barcode has been scanned correctly. It is computed modulo 10, where the weights in the checksum calculation alternate 3 and 1. In particular, since the weights are relatively prime to 10, the EAN-13 system will detect all single digit errors. It also recognizes 90% of transposition errors (all cases, where the difference between adjacent digits is not 5).
The checksum is calculated as sum of products – taking an alternating weight value (3 or 1) times the value of each data digit. The checksum digit is the digit which must be added to this checksum to get a number divisible by 10 (i.e. the additive inverse of the checksum, modulo 10). [8] See ISBN-13 check digit calculation for a more extensive description and algorithm. The Global Location Number (GLN) also uses the same method.
The weight at a specific position in the EAN code is alternating (3 or 1) in a way, that the final data digit has a weight of 3 (and thus the check digit has a weight of 1).
All Global Trade Item Number (GTIN) and Serial Shipping Container Code (SSCC) codes meet the next rule:
Numbering the positions from the right (code aligned to the right), the odd data digits are always weight of 3 and the even data digits are always weight of 1, regardless of the length of the code.
Weights for 18-digit SSCC code and GTINs (GTIN-8, GTIN-12, GTIN-13, GTIN-14):
position | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
weight | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
Weights for EAN-13 code:
position | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
weight | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
Weights for EAN-8 code:
position | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|
weight | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
position | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
first 12 digits of barcode | 4 | 0 | 0 | 6 | 3 | 8 | 1 | 3 | 3 | 3 | 9 | 3 |
weight | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
partial sum | 4 | 0 | 0 | 18 | 3 | 24 | 1 | 9 | 3 | 9 | 9 | 9 |
checksum | 89 |
position | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|
first 7 digits of barcode | 7 | 3 | 5 | 1 | 3 | 5 | 3 |
weight | 3 | 1 | 3 | 1 | 3 | 1 | 3 |
partial sum | 21 | 3 | 15 | 1 | 9 | 5 | 9 |
checksum | 63 |
The GTIN numbers, encoded to UPC-A, EAN-8 and EAN-13, all use similar encoding. The encoded data is usually repeated in plain text below the barcode.
The barcode consists of 95 areas (also called modules[ citation needed ]) of equal width. Each area can be either white (represented here as 0) or black (represented as 1). From left to right:
To encode the 13-digit EAN-13 number, the digits are split into 3 groups; the first digit, the first group of 6 and the last group of 6. The first group of 6 is encoded using a pattern whereby each digit has two possible encodings, one of which has even parity (denoted with letter G) and one of which has odd parity (denoted with letter L). The first digit is not represented directly by a pattern of bars and spaces, but is encoded indirectly, by selecting a pattern of choices between these two encodings for the first group of 6 digits, according to the table below. All digits in the last group of 6 digits are encoded using a single pattern RRRRRR, the one also used for UPC.
If the first digit is zero, all digits in the first group of 6 are encoded using the pattern LLLLLL used for UPC; therefore, a UPC barcode is also an EAN-13 barcode with the first digit set to zero.
First digit | First group of 6 digits | Last group of 6 digits |
---|---|---|
0 | LLLLLL | RRRRRR |
1 | LLGLGG | RRRRRR |
2 | LLGGLG | RRRRRR |
3 | LLGGGL | RRRRRR |
4 | LGLLGG | RRRRRR |
5 | LGGLLG | RRRRRR |
6 | LGGGLL | RRRRRR |
7 | LGLGLG | RRRRRR |
8 | LGLGGL | RRRRRR |
9 | LGGLGL | RRRRRR |
This encoding guarantees that the first group always starts with an L-code, which has odd parity, and that the second group always starts with an R-code, which has even parity. Thus, it does not matter whether the barcode is scanned from the left or from the right, as the scanning software can use this parity to identify the start and end of the code.
EAN-8 barcodes encode all digits directly, using this scheme:
First group of 4 digits | Last group of 4 digits |
---|---|
LLLL | RRRR |
Digit | L-code | G-code | R-code |
---|---|---|---|
0 | 0001101 | 0100111 | 1110010 |
1 | 0011001 | 0110011 | 1100110 |
2 | 0010011 | 0011011 | 1101100 |
3 | 0111101 | 0100001 | 1000010 |
4 | 0100011 | 0011101 | 1011100 |
5 | 0110001 | 0111001 | 1001110 |
6 | 0101111 | 0000101 | 1010000 |
7 | 0111011 | 0010001 | 1000100 |
8 | 0110111 | 0001001 | 1001000 |
9 | 0001011 | 0010111 | 1110100 |
Note: Entries in the R-column are bitwise complements (logical operator: negation) of the respective entries in the L-column. Entries in the G-column are the entries in the R-column in reverse bit order. See pictures of all codes against a colored background.
A run of one or more black areas is known as a "bar", and a run of one or more white areas is known as a "space". As can be seen in the table, each digit's encoding comprises two bars and two spaces, and the maximum width of a bar or space is four areas.
The complete EAN-13 code is thus: 4 003994 155486.
This section needs expansion. You can help by adding to it. (January 2019) |
By utilizing the barcode's center marker, a scanner can decode an International Article Number (EAN) by scanning one half of the barcode at a time through a helical scan at a 45-degree angle. This method reconstructs the full code from partial scans, useful when the barcode is obscured or damaged. Error detection algorithms, such as checksum verification, play a crucial role by identifying and correcting scanning errors, ensuring accurate decoding. Additionally, modern scanners often employ omnidirectional scanning, enhancing their ability to read barcodes at various angles.
These scanners also leverage the symmetrical structure of EAN-13, allowing decoding from either direction. Error detection algorithms, like the Luhn algorithm, commonly used in checksum calculations, verify the integrity of the data scanned. If errors are detected, the scanner can either alert the user or attempt correction, improving the reliability of scanning in dynamic or less-than-ideal conditions.
Japanese Article Number (JAN) is a barcode standard compatible with the EAN. It is a subset of EAN. Use of the JAN standard began in 1978. Originally, JAN was issued a flag code (EAN's number system) of 49. In 1992, JAN was newly issued an additional flag code of 45. In January 2001 the manufacturer code changed to 7 digits (9 digits including the flag code) for new companies. [9]
The International Standard Book Number (ISBN) is a numeric commercial book identifier that is intended to be unique. Publishers purchase or receive ISBNs from an affiliate of the International ISBN Agency.
The Universal Product Code is a barcode symbology that is used worldwide for tracking trade items in stores.
A barcode or bar code is a method of representing data in a visual, machine-readable form. Initially, barcodes represented data by varying the widths, spacings and sizes of parallel lines. These barcodes, now commonly referred to as linear or one-dimensional (1D), can be scanned by special optical scanners, called barcode readers, of which there are several types.
Code 39 is a variable length, discrete barcode symbology defined in ISO/IEC 16388:2007.
A check digit is a form of redundancy check used for error detection on identification numbers, such as bank account numbers, which are used in an application where they will at least sometimes be input manually. It is analogous to a binary parity bit used to check for errors in computer-generated data. It consists of one or more digits computed by an algorithm from the other digits in the sequence input.
The Electronic Product Code (EPC) is designed as a universal identifier that provides a unique identity for every physical object anywhere in the world, for all time. The EPC structure is defined in the EPCglobal Tag Data Standard, which is a freely available standard. The canonical representation of an EPC is a URI, namely the 'pure-identity URI' representation that is intended for use when referring to a specific physical object in communications about EPCs among information systems and business application software.
Code 128 is a high-density linear barcode symbology defined in ISO/IEC 15417:2007. It is used for alphanumeric or numeric-only barcodes. It can encode all 128 characters of ASCII and, by use of an extension symbol (FNC4), the Latin-1 characters defined in ISO/IEC 8859-1. It generally results in more compact barcodes compared to other methods like Code 39, especially when the texts contain mostly digits. Code 128 was developed by the Computer Identics Corporation in 1981.
Interleaved 2 of 5 (ITF) is a continuous two-width barcode symbology encoding digits. It is used commercially on 135 film, for ITF-14 barcodes, and on cartons of some products, while the products inside are labeled with UPC or EAN. ITF was created by David Allais, who also invented barcodes Code 39, Code 11, Code 93, and Code 49.
The Global Trade Item Number (GTIN) is an identifier for trade items, developed by the international organization GS1. Such identifiers are used to look up product information in a database which may belong to a retailer, manufacturer, collector, researcher, or other entity. The uniqueness and universality of the identifier is useful in establishing which product in one database corresponds to which product in another database, especially across organizational boundaries.
GS1 is a not-for-profit, international organization developing and maintaining its own standards for barcodes and the corresponding issue company prefixes. The best known of these standards is the barcode, a symbol printed on products that can be scanned electronically.
"Bookland" is the informal name for the Unique Country Code (UCC) prefix allocated in the 1980s for European Article Number (EAN) identifiers of published books, regardless of country of origin, so that the EAN namespace can catalogue books by ISBN rather than maintaining a redundant parallel numbering system. In other words, Bookland is a fictitious country that exists solely in EAN for the purposes of non-geographically cataloguing books in the otherwise geographically keyed EAN coding system.
Codabar is a linear barcode symbology developed in 1972 by Pitney Bowes Corp. It and its variants are also known as Codeabar, Ames Code, NW-7, Monarch, Code 2 of 7, Rationalized Codabar, ANSI/AIM BC3-1995 or USD-4. Although Codabar has not been registered for United States federal trademark status, its hyphenated variant, Code-a-bar, is a registered trademark.
An EAN-8 is an EAN/UPC symbology barcode and is derived from the longer International Article Number (EAN-13) code. It was introduced for use on small packages where an EAN-13 barcode would be too large; for example on cigarettes, pencils, and chewing gum packets. It is encoded identically to the 12 digits of the UPC-A barcode, except that it has 4 digits in each of the left and right halves.
The EAN-5 is a 5-digit European Article Number code, and is a supplement to the EAN-13 barcode used on books. It is used to give a suggestion for the price of the book.
The Global Location Number (GLN) is part of the GS1 systems of standards. It is a simple tool used to identify a location and can identify locations uniquely where required. This identifier is compliant with norm ISO/IEC 6523.
The GS1 Databar Coupon code has been in use in retail industry since the mid-1980s. At first, it was a UPC with system ID 5. Since UPCs cannot hold more than 12 digits, it required another barcode to hold additional information like offer code, expiration date and household ID numbers. Therefore, the code was often extended with an additional UCC/EAN 128 barcode. EAN 13 was sometimes used instead of UPC, and because it starts with 99, it was called the EAN 99 coupon barcode, and subsequently GS1 DataBar. After more than 20 years in use, there is now a need to encode more data for complex coupons, and to accommodate longer company IDs, so the traditional coupon code has become less efficient and sometimes not usable at all.
ITF-6 is the implementation of an Interleaved 2 of 5 (ITF) barcode to encode a addon to ITF-14 and ITF-16 barcodes. Originally was developed as a part of JIS specification for Physical Distribution Center. Instead of ITF-14, it wasn’t standardized by ISO Committee but it is widely used to encode additional data to Global Trade Item Number such as items quantity or container weight.
Industrial 2 of 5. is a variable length, discrete, two width symbology. Industrial 2 of 5 is a subset of two-out-of-five codes.
Matrix 2 of 5 is a variable length, discrete, two width symbology. Matrix 2 of 5 is a subset of two-out-of-five codes. Unlike Industrial 2 of 5 code, Matrix 2 of 5 can encode data not only with black bars but with white spaces.
MicroPDF417 is two-dimensional (2D) stacked barcode symbology invented in 1996, by Frederick Schuessler, Kevin Hunter, Sundeep Kumar and Cary Chu from Symbol Technologies company. MicroPDF417 consists from specially encoded Row Address Patterns (RAP) columns and aligned to them Data columns encoded in "417" sequence which was invented in 1990. In 2006, the standard was registered as ISO/IEC 24728:2006.
After graduating from Maryland in 1951, George Laurer joined IBM as a junior engineer and worked up the ranks to senior engineer. In 1969, he returned to the technical side of engineering and was later assigned the monumental task of designing a code and symbol for product identification for the Uniform Grocery Product Code Council. His solution –the Universal Product Code –radically changed the retail world. Since then, he has enhanced the code by adding a 13th digit. Laurer retired from IBM in 1987. He holds some 25 patents and is a member of the university's A. James Clark School of Engineering Hall of Fame.
The first three digits of the EAN-13 serve as the GS1 Prefix
{{cite web}}
: Check |archive-url=
value (help)CS1 maint: numeric names: authors list (link) CS1 maint: url-status (link)