A prefix code is a type of code system distinguished by its possession of the "prefix property", which requires that there is no whole code word in the system that is a prefix (initial segment) of any other code word in the system. It is trivially true for fixed-length codes, so only a point of consideration for variable-length codes.
For example, a code with code words {9, 55} has the prefix property; a code consisting of {9, 5, 59, 55} does not, because "5" is a prefix of "59" and also of "55". A prefix code is a uniquely decodable code: given a complete and accurate sequence, a receiver can identify each word without requiring a special marker between words. However, there are uniquely decodable codes that are not prefix codes; for instance, the reverse of a prefix code is still uniquely decodable (it is a suffix code), but it is not necessarily a prefix code.
Prefix codes are also known as prefix-free codes, prefix condition codes and instantaneous codes. Although Huffman coding is just one of many algorithms for deriving prefix codes, prefix codes are also widely referred to as "Huffman codes", even when the code was not produced by a Huffman algorithm. The term comma-free code is sometimes also applied as a synonym for prefix-free codes [1] [2] but in most mathematical books and articles (e.g. [3] [4] ) a comma-free code is used to mean a self-synchronizing code, a subclass of prefix codes.
Using prefix codes, a message can be transmitted as a sequence of concatenated code words, without any out-of-band markers or (alternatively) special markers between words to frame the words in the message. The recipient can decode the message unambiguously, by repeatedly finding and removing sequences that form valid code words. This is not generally possible with codes that lack the prefix property, for example {0, 1, 10, 11}: a receiver reading a "1" at the start of a code word would not know whether that was the complete code word "1", or merely the prefix of the code word "10" or "11"; so the string "10" could be interpreted either as a single codeword or as the concatenation of the words "1" then "0".
The variable-length Huffman codes, country calling codes, the country and publisher parts of ISBNs, the Secondary Synchronization Codes used in the UMTS W-CDMA 3G Wireless Standard, and the instruction sets (machine language) of most computer microarchitectures are prefix codes.
Prefix codes are not error-correcting codes. In practice, a message might first be compressed with a prefix code, and then encoded again with channel coding (including error correction) before transmission.
For any uniquely decodable code there is a prefix code that has the same code word lengths. [5] Kraft's inequality characterizes the sets of code word lengths that are possible in a uniquely decodable code. [6]
If every word in the code has the same length, the code is called a fixed-length code, or a block code (though the term block code is also used for fixed-size error-correcting codes in channel coding). For example, ISO 8859-15 letters are always 8 bits long. UTF-32/UCS-4 letters are always 32 bits long. ATM cells are always 424 bits (53 bytes) long. A fixed-length code of fixed length k bits can encode up to source symbols.
A fixed-length code is necessarily a prefix code. It is possible to turn any code into a fixed-length code by padding fixed symbols to the shorter prefixes in order to meet the length of the longest prefixes. Alternately, such padding codes may be employed to introduce redundancy that allows autocorrection and/or synchronisation. However, fixed length encodings are inefficient in situations where some words are much more likely to be transmitted than others.
Truncated binary encoding is a straightforward generalization of fixed-length codes to deal with cases where the number of symbols n is not a power of two. Source symbols are assigned codewords of length k and k+1, where k is chosen so that 2k < n ≤ 2k+1.
Huffman coding is a more sophisticated technique for constructing variable-length prefix codes. The Huffman coding algorithm takes as input the frequencies that the code words should have, and constructs a prefix code that minimizes the weighted average of the code word lengths. (This is closely related to minimizing the entropy.) This is a form of lossless data compression based on entropy encoding.
Some codes mark the end of a code word with a special "comma" symbol (also called a Sentinel value), different from normal data. [7] This is somewhat analogous to the spaces between words in a sentence; they mark where one word ends and another begins. If every code word ends in a comma, and the comma does not appear elsewhere in a code word, the code is automatically prefix-free. However, reserving an entire symbol only for use as a comma can be inefficient, especially for languages with a small number of symbols. Morse code is an everyday example of a variable-length code with a comma. The long pauses between letters, and the even longer pauses between words, help people recognize where one letter (or word) ends, and the next begins. Similarly, Fibonacci coding uses a "11" to mark the end of every code word.
Self-synchronizing codes are prefix codes that allow frame synchronization.
A suffix code is a set of words none of which is a suffix of any other; equivalently, a set of words which are the reverse of a prefix code. As with a prefix code, the representation of a string as a concatenation of such words is unique. A bifix code is a set of words which is both a prefix and a suffix code. [8] An optimal prefix code is a prefix code with minimal average length. That is, assume an alphabet of n symbols with probabilities for a prefix code C. If C' is another prefix code and are the lengths of the codewords of C', then . [9]
Examples of prefix codes include:
Commonly used techniques for constructing prefix codes include Huffman codes and the earlier Shannon–Fano codes, and universal codes such as:
In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication channel or storage in a storage medium. An early example is an invention of language, which enabled a person, through speech, to communicate what they thought, saw, heard, or felt to others. But speech limits the range of communication to the distance a voice can carry and limits the audience to those present when the speech is uttered. The invention of writing, which converted spoken language into visual symbols, extended the range of communication across space and time.
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression. The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed. A string is generally considered as a data type and is often implemented as an array data structure of bytes that stores a sequence of elements, typically characters, using some character encoding. String may also denote more general arrays or other sequence data types and structures.
In coding theory, especially in telecommunications, a self-synchronizing code is a uniquely decodable code in which the symbol stream formed by a portion of one code word, or by the overlapped portion of any two adjacent code words, is not a valid code word. Put another way, a set of strings over an alphabet is called a self-synchronizing code if for each string obtained by concatenating two code words, the substring starting at the second symbol and ending at the second-last symbol does not contain any code word as substring. Every self-synchronizing code is a prefix code, but not all prefix codes are self-synchronizing.
Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, including consumer technologies such as MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, Data Matrix, data transmission technologies such as DSL and WiMAX, broadcast systems such as satellite communications, DVB and ATSC, and storage systems such as RAID 6.
In the field of data compression, Shannon–Fano coding, named after Claude Shannon and Robert Fano, is one of two related techniques for constructing a prefix code based on a set of symbols and their probabilities.
Arithmetic coding (AC) is a form of entropy encoding used in lossless data compression. Normally, a string of characters is represented using a fixed number of bits per character, as in the ASCII code. When a string is converted to arithmetic encoding, frequently used characters will be stored with fewer bits and not-so-frequently occurring characters will be stored with more bits, resulting in fewer bits used in total. Arithmetic coding differs from other forms of entropy encoding, such as Huffman coding, in that rather than separating the input into component symbols and replacing each with a code, arithmetic coding encodes the entire message into a single number, an arbitrary-precision fraction q, where 0.0 ≤ q < 1.0. It represents the current information as a range, defined by two numbers. A recent family of entropy coders called asymmetric numeral systems allows for faster implementations thanks to directly operating on a single natural number representing the current information.
Unary coding, or the unary numeral system and also sometimes called thermometer code, is an entropy encoding that represents a natural number, n, with a code of length n + 1, usually n ones followed by a zero or with n − 1 ones followed by a zero. For example 5 is represented as 111110 or 11110. Some representations use n or n − 1 zeros followed by a one. The ones and zeros are interchangeable without loss of generality. Unary coding is both a prefix-free code and a self-synchronizing code.
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.
In coding theory, the Kraft–McMillan inequality gives a necessary and sufficient condition for the existence of a prefix code or a uniquely decodable code for a given set of codeword lengths. Its applications to prefix codes and trees often find use in computer science and information theory. The prefix code can contain either finitely many or infinitely many codewords.
In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code.
In data compression, a universal code for integers is a prefix code that maps the positive integers onto binary codewords, with the additional property that whatever the true probability distribution on integers, as long as the distribution is monotonic (i.e., p(i) ≥ p(i + 1) for all positive i), the expected lengths of the codewords are within a constant factor of the expected lengths that the optimal code for that probability distribution would have assigned. A universal code is asymptotically optimal if the ratio between actual and optimal expected lengths is bounded by a function of the information entropy of the code that, in addition to being bounded, approaches 1 as entropy approaches infinity.
In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Rather than storing the structure of the code tree explicitly, canonical Huffman codes are ordered in such a way that it suffices to only store the lengths of the codewords, which reduces the overhead of the codebook.
In coding theory, a variable-length code is a code which maps source symbols to a variable number of bits. The equivalent concept in computer science is bit string.
In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.
In coding theory, the Sardinas–Patterson algorithm is a classical algorithm for determining in polynomial time whether a given variable-length code is uniquely decodable, named after August Albert Sardinas and George W. Patterson, who published it in 1953. The algorithm carries out a systematic search for a string which admits two different decompositions into codewords. As Knuth reports, the algorithm was rediscovered about ten years later in 1963 by Floyd, despite the fact that it was at the time already well known in coding theory.
A locally decodable code (LDC) is an error-correcting code that allows a single bit of the original message to be decoded with high probability by only examining a small number of bits of a possibly corrupted codeword. This property could be useful, say, in a context where information is being transmitted over a noisy channel, and only a small subset of the data is required at a particular time and there is no need to decode the entire message at once. Note that locally decodable codes are not a subset of locally testable codes, though there is some overlap between the two.
In computer science and information theory, Tunstall coding is a form of entropy coding used for lossless data compression.
In coding theory, burst error-correcting codes employ methods of correcting burst errors, which are errors that occur in many consecutive bits rather than occurring in bits independently of each other.
In coding theory, Zemor's algorithm, designed and developed by Gilles Zemor, is a recursive low-complexity approach to code construction. It is an improvement over the algorithm of Sipser and Spielman.