Block code

Last updated

In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

Contents

Examples of block codes are Reed–Solomon codes, Hamming codes, Hadamard codes, Expander codes, Golay codes, and Reed–Muller codes. These examples also belong to the class of linear codes, and hence they are called linear block codes. More particularly, these codes are known as algebraic block codes, or cyclic block codes, because they can be generated using boolean polynomials.

Algebraic block codes are typically hard-decoded using algebraic decoders.[ jargon ]

The term block code may also refer to any error-correcting code that acts on a block of bits of input data to produce bits of output data . Consequently, the block coder is a memoryless device. Under this definition codes such as turbo codes, terminated convolutional codes and other iteratively decodable codes (turbo-like codes) would also be considered block codes. A non-terminated convolutional encoder would be an example of a non-block (unframed) code, which has memory and is instead classified as a tree code.

This article deals with "algebraic block codes".

The block code and its parameters

Error-correcting codes are used to reliably transmit digital data over unreliable communication channels subject to channel noise. When a sender wants to transmit a possibly very long data stream using a block code, the sender breaks the stream up into pieces of some fixed size. Each such piece is called message and the procedure given by the block code encodes each message individually into a codeword, also called a block in the context of block codes. The sender then transmits all blocks to the receiver, who can in turn use some decoding mechanism to (hopefully) recover the original messages from the possibly corrupted received blocks. The performance and success of the overall transmission depends on the parameters of the channel and the block code.

Formally, a block code is an injective mapping

.

Here, is a finite and nonempty set and and are integers. The meaning and significance of these three parameters and other parameters related to the code are described below.

The alphabet Σ

The data stream to be encoded is modeled as a string over some alphabet. The size of the alphabet is often written as . If , then the block code is called a binary block code. In many applications it is useful to consider to be a prime power, and to identify with the finite field .

The message length k

Messages are elements of , that is, strings of length . Hence the number is called the message length or dimension of a block code.

The block length n

The block length of a block code is the number of symbols in a block. Hence, the elements of are strings of length and correspond to blocks that may be received by the receiver. Hence they are also called received words. If for some message , then is called the codeword of .

The rate R

The rate of a block code is defined as the ratio between its message length and its block length:

.

A large rate means that the amount of actual message per transmitted block is high. In this sense, the rate measures the transmission speed and the quantity measures the overhead that occurs due to the encoding with the block code. It is a simple information theoretical fact that the rate cannot exceed since data cannot in general be losslessly compressed. Formally, this follows from the fact that the code is an injective map.

The distance d

The distance or minimum distanced of a block code is the minimum number of positions in which any two distinct codewords differ, and the relative distance is the fraction . Formally, for received words , let denote the Hamming distance between and , that is, the number of positions in which and differ. Then the minimum distance of the code is defined as

.

Since any code has to be injective, any two codewords will disagree in at least one position, so the distance of any code is at least . Besides, the distance equals the minimum weight for linear block codes because:

.

A larger distance allows for more error correction and detection. For example, if we only consider errors that may change symbols of the sent codeword but never erase or add them, then the number of errors is the number of positions in which the sent codeword and the received word differ. A code with distance d allows the receiver to detect up to transmission errors since changing positions of a codeword can never accidentally yield another codeword. Furthermore, if no more than transmission errors occur, the receiver can uniquely decode the received word to a codeword. This is because every received word has at most one codeword at distance . If more than transmission errors occur, the receiver cannot uniquely decode the received word in general as there might be several possible codewords. One way for the receiver to cope with this situation is to use list decoding, in which the decoder outputs a list of all codewords in a certain radius.

The notation describes a block code over an alphabet of size , with a block length , message length , and distance . If the block code is a linear block code, then the square brackets in the notation are used to represent that fact. For binary codes with , the index is sometimes dropped. For maximum distance separable codes, the distance is always , but sometimes the precise distance is not known, non-trivial to prove or state, or not needed. In such cases, the -component may be missing.

Sometimes, especially for non-block codes, the notation is used for codes that contain codewords of length . For block codes with messages of length over an alphabet of size , this number would be .

Examples

As mentioned above, there are a vast number of error-correcting codes that are actually block codes. The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits. Hence this code is a block code. It turns out that it is also a linear code and that it has distance 3. In the shorthand notation above, this means that the Hamming(7,4) code is a code.

Reed–Solomon codes are a family of codes with and being a prime power. Rank codes are family of codes with . Hadamard codes are a family of codes with and .

Error detection and correction properties

A codeword could be considered as a point in the -dimension space and the code is the subset of . A code has distance means that , there is no other codeword in the Hamming ball centered at with radius , which is defined as the collection of -dimension words whose Hamming distance to is no more than . Similarly, with (minimum) distance has the following properties:

Lower and upper bounds of block codes

Hamming limit HammingLimit.png
Hamming limit
There are theoretical limits (such as the Hamming limit), but another question is which codes can actually constructed.
It is like packing spheres in a box in many dimensions. This diagram shows the constructible codes, which are linear and binary. The x axis shows the number of protected symbols k, the y axis the number of needed check symbols n-k. Plotted are the limits for different Hamming distances from 1 (unprotected) to 34. Marked with dots are perfect codes:
light orange on x axis: trivial unprotected codes
orange on y axis: trivial repeat codes
dark orange on data set d=3: classic perfect Hamming codes
dark red and larger: the only perfect binary Golay code Linear Binary Block Codes and their needed Check Symbols.png
There are theoretical limits (such as the Hamming limit), but another question is which codes can actually constructed. It is like packing spheres in a box in many dimensions. This diagram shows the constructible codes, which are linear and binary. The x axis shows the number of protected symbols k, the y axis the number of needed check symbols n–k. Plotted are the limits for different Hamming distances from 1 (unprotected) to 34. Marked with dots are perfect codes:
  • light orange on x axis: trivial unprotected codes
  • orange on y axis: trivial repeat codes
  • dark orange on data set d=3: classic perfect Hamming codes
  • dark red and larger: the only perfect binary Golay code

Family of codes

is called family of codes, where is an code with monotonic increasing .

Rate of family of codes C is defined as

Relative distance of family of codes C is defined as

To explore the relationship between and , a set of lower and upper bounds of block codes are known.

Hamming bound

Singleton bound

The Singleton bound is that the sum of the rate and the relative distance of a block code cannot be much larger than 1:

.

In other words, every block code satisfies the inequality . Reed–Solomon codes are non-trivial examples of codes that satisfy the singleton bound with equality.

Plotkin bound

For , . In other words, .

For the general case, the following Plotkin bounds holds for any with distance d:

  1. If
  2. If

For any q-ary code with distance ,

Gilbert–Varshamov bound

, where , is the q-ary entropy function.

Johnson bound

Define .
Let be the maximum number of codewords in a Hamming ball of radius e for any code of distance d.

Then we have the Johnson Bound : , if

Elias–Bassalygo bound

Sphere packings and lattices

Block codes are tied to the sphere packing problem which has received some attention over the years. In two dimensions, it is easy to visualize. Take a bunch of pennies flat on the table and push them together. The result is a hexagon pattern like a bee's nest. But block codes rely on more dimensions which cannot easily be visualized. The powerful Golay code used in deep space communications uses 24 dimensions. If used as a binary code (which it usually is), the dimensions refer to the length of the codeword as defined above.

The theory of coding uses the N-dimensional sphere model. For example, how many pennies can be packed into a circle on a tabletop or in 3 dimensions, how many marbles can be packed into a globe. Other considerations enter the choice of a code. For example, hexagon packing into the constraint of a rectangular box will leave empty space at the corners. As the dimensions get larger, the percentage of empty space grows smaller. But at certain dimensions, the packing uses all the space and these codes are the so-called perfect codes. There are very few of these codes.

Another property is the number of neighbors a single codeword may have. [1] Again, consider pennies as an example. First we pack the pennies in a rectangular grid. Each penny will have 4 near neighbors (and 4 at the corners which are farther away). In a hexagon, each penny will have 6 near neighbors. Respectively, in three and four dimensions, the maximum packing is given by the 12-face and 24-cell with 12 and 24 neighbors, respectively. When we increase the dimensions, the number of near neighbors increases very rapidly. In general, the value is given by the kissing numbers.

The result is that the number of ways for noise to make the receiver choose a neighbor (hence an error) grows as well. This is a fundamental limitation of block codes, and indeed all codes. It may be harder to cause an error to a single neighbor, but the number of neighbors can be large enough so the total error probability actually suffers. [1]

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, the most prominent of which include consumer technologies such as MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, data transmission technologies such as DSL and WiMAX, broadcast systems such as satellite communications, DVB and ATSC, and storage systems such as RAID 6.

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes.

In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance . It is also known as the Joshibound. proved by Joshi (1958) and even earlier by Komamiya (1953).

In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code.

In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel.

<span class="mw-page-title-main">Hadamard code</span> Error-correcting code

The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of Mars back to Earth from the NASA space probe Mariner 9. Because of its unique mathematical properties, the Hadamard code is not only used by engineers, but also intensely studied in coding theory, mathematics, and theoretical computer science. The Hadamard code is also known under the names Walsh code, Walsh family, and Walsh–Hadamard code in recognition of the American mathematician Joseph Leonard Walsh.

In coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.

In coding theory, Justesen codes form a class of error-correcting codes that have a constant rate, constant relative distance, and a constant alphabet size.

A locally testable code is a type of error-correcting code for which it can be determined if a string is a word in that code by looking at a small number of bits of the string. In some situations, it is useful to know if the data is corrupted without decoding all of it so that appropriate action can be taken in response. For example, in communication, if the receiver encounters a corrupted code, it can request the data be re-sent, which could increase the accuracy of said data. Similarly, in data storage, these codes can allow for damaged data to be recovered and rewritten properly.

A locally decodable code (LDC) is an error-correcting code that allows a single bit of the original message to be decoded with high probability by only examining a small number of bits of a possibly corrupted codeword. This property could be useful, say, in a context where information is being transmitted over a noisy channel, and only a small subset of the data is required at a particular time and there is no need to decode the entire message at once. Note that locally decodable codes are not a subset of locally testable codes, though there is some overlap between the two.

The Gilbert–Varshamov bound for linear codes is related to the general Gilbert–Varshamov bound, which gives a lower bound on the maximal number of elements in an error-correcting code of a given block length and minimum Hamming weight over a field . This may be translated into a statement about the maximum rate of a code with given length and minimum distance. The Gilbert–Varshamov bound for linear codes asserts the existence of q-ary linear codes for any relative minimum distance less than the given bound that simultaneously have high rate. The existence proof uses the probabilistic method, and thus is not constructive. The Gilbert–Varshamov bound is the best known in terms of relative distance for codes over alphabets of size less than 49. For larger alphabets, algebraic geometry codes sometimes achieve an asymptotically better rate vs. distance tradeoff than is given by the Gilbert–Varshamov bound.

In coding theory, generalized minimum-distance (GMD) decoding provides an efficient algorithm for decoding concatenated codes, which is based on using an errors-and-erasures decoder for the outer code.

In quantum information theory, the classical capacity of a quantum channel is the maximum rate at which classical data can be sent over it error-free in the limit of many uses of the channel. Holevo, Schumacher, and Westmoreland proved the following least upper bound on the classical capacity of any quantum channel :

In coding theory, folded Reed–Solomon codes are like Reed–Solomon codes, which are obtained by mapping Reed–Solomon codewords over a larger alphabet by careful bundling of codeword symbols.

In mathematics and computer science, the binary Goppa code is an error-correcting code that belongs to the class of general Goppa codes originally described by Valerii Denisovich Goppa, but the binary structure gives it several mathematical advantages over non-binary variants, also providing a better fit for common usage in computers and telecommunication. Binary Goppa codes have interesting properties suitable for cryptography in McEliece-like cryptosystems and similar setups.

In coding theory, burst error-correcting codes employ methods of correcting burst errors, which are errors that occur in many consecutive bits rather than occurring in bits independently of each other.

In coding theory, Zemor's algorithm, designed and developed by Gilles Zemor, is a recursive low-complexity approach to code construction. It is an improvement over the algorithm of Sipser and Spielman.

Permutation codes are a family of error correction codes that were introduced first by Slepian in 1965. and have been widely studied both in Combinatorics and Information theory due to their applications related to Flash memory and Power-line communication.

References

  1. 1 2 3 Christian Schlegel and Lance Pérez (2004). Trellis and turbo coding. Wiley-IEEE. p. 73. ISBN   978-0-471-22755-7.