Plotkin bound

Last updated

In the mathematics of coding theory, the Plotkin bound, named after Morris Plotkin, is a limit (or bound) on the maximum possible number of codewords in binary codes of given length n and given minimum distance d.

Contents

Statement of the bound

A code is considered "binary" if the codewords use symbols from the binary alphabet . In particular, if all codewords have a fixed length n, then the binary code has length n. Equivalently, in this case the codewords can be considered elements of vector space over the finite field . Let be the minimum distance of , i.e.

where is the Hamming distance between and . The expression represents the maximum number of possible codewords in a binary code of length and minimum distance . The Plotkin bound places a limit on this expression.

Theorem (Plotkin bound):

i) If is even and , then

ii) If is odd and , then

iii) If is even, then

iv) If is odd, then

where denotes the floor function.

Proof of case i)

Let be the Hamming distance of and , and be the number of elements in (thus, is equal to ). The bound is proved by bounding the quantity in two different ways.

On the one hand, there are choices for and for each such choice, there are choices for . Since by definition for all and (), it follows that

On the other hand, let be an matrix whose rows are the elements of . Let be the number of zeros contained in the 'th column of . This means that the 'th column contains ones. Each choice of a zero and a one in the same column contributes exactly (because ) to the sum and therefore

The quantity on the right is maximized if and only if holds for all (at this point of the proof we ignore the fact, that the are integers), then

Combining the upper and lower bounds for that we have just derived,

which given that is equivalent to

Since is even, it follows that

This completes the proof of the bound.

See also

Related Research Articles

Floor and ceiling functions Mathematical functions taking a real input and rounding it down or up, respectively

In mathematics and computer science, the floor function is the function that takes as input a real number and gives as output the greatest integer less than or equal to , denoted . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted .

A binary symmetric channel is a common communications channel model used in coding theory and information theory. In this model, a transmitter wishes to send a bit, and the receiver receives a bit. It is assumed that the bit is usually transmitted correctly, but that it will be "flipped" with a small probability. This channel is used frequently in information theory because it is one of the simplest channels to analyze.

Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics:

In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes.

In coding theory, the Singleton bound, named after Richard Collom Singleton, is a relatively crude upper bound on the size of an arbitrary block code with block length , size and minimum distance .

In mathematics and computer science, in the field of coding theory, the Hamming bound is a limit on the parameters of an arbitrary block code: it is also known as the sphere-packing bound or the volume bound from an interpretation in terms of packing balls in the Hamming metric into the space of all possible words. It gives an important limitation on the efficiency with which any error-correcting code can utilize the space in which its code words are embedded. A code that attains the Hamming bound is said to be a perfect code.

In coding theory, the Gilbert–Varshamov bound is a limit on the parameters of a code. It is occasionally known as the Gilbert–Shannon–Varshamov bound, but the name "Gilbert–Varshamov bound" is by far the most popular. Varshamov proved this bound by using the probabilistic method for linear codes. For more about that proof, see Gilbert–Varshamov bound for linear codes.

In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel.

In applied mathematics, the Johnson bound is a limit on the size of error-correcting codes, as used in coding theory for data transmission or communications.

In information theory, information dimension is an information measure for random vectors in Euclidean space, based on the normalized entropy of finely quantized versions of the random vectors. This concept was first introduced by Alfréd Rényi in 1959.

Hadamard code

The Hadamard code is an error-correcting code named after Jacques Hadamard that is used for error detection and correction when transmitting messages over very noisy or unreliable channels. In 1971, the code was used to transmit photos of Mars back to Earth from the NASA space probe Mariner 9. Because of its unique mathematical properties, the Hadamard code is not only used by engineers, but also intensely studied in coding theory, mathematics, and theoretical computer science. The Hadamard code is also known under the names Walsh code, Walsh family, and Walsh–Hadamard code in recognition of the American mathematician Joseph Leonard Walsh.

A Z-channel is a communications channel used in coding theory and information theory to model the behaviour of some data storage systems.

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.

The Elias Bassalygo bound is a mathematical limit used in coding theory for error correction during data transmission or communications.

AN codes are error-correcting code that are used in arithmetic applications. Arithmetic codes were commonly used in computer processors to ensure the accuracy of its arithmetic operations when electronics were more unreliable. Arithmetic codes help the processor to detect when an error is made and correct it. Without these codes, processors would be unreliable since any errors would go undetected. AN codes are arithmetic codes that are named for the integers and that are used to encode and decode the codewords.

The Gilbert–Varshamov bound for linear codes is related to the general Gilbert–Varshamov bound, which gives a lower bound on the maximal number of elements in an error-correcting code of a given block length and minimum Hamming weight over a field . This may be translated into a statement about the maximum rate of a code with given length and minimum distance. The Gilbert–Varshamov bound for linear codes asserts the existence of q-ary linear codes for any relative minimum distance less than the given bound that simultaneously have high rate. The existence proof uses the probabilistic method, and thus is not constructive. The Gilbert–Varshamov bound is the best known in terms of relative distance for codes over alphabets of size less than 49. For larger alphabets, Goppa codes sometimes achieve an asymptotically better rate vs. distance tradeoff than is given by the Gilbert-Varshamov bound.

In coding theory, generalized minimum-distance (GMD) decoding provides an efficient algorithm for decoding concatenated codes, which is based on using an errors-and-erasures decoder for the outer code.

In mathematics and computer science, the binary Goppa code is an error-correcting code that belongs to the class of general Goppa codes originally described by Valerii Denisovich Goppa, but the binary structure gives it several mathematical advantages over non-binary variants, also providing a better fit for common usage in computers and telecommunication. Binary Goppa codes have interesting properties suitable for cryptography in McEliece-like cryptosystems and similar setups.

In computer science, merge-insertion sort or the Ford–Johnson algorithm is a comparison sorting algorithm published in 1959 by L. R. Ford Jr. and Selmer M. Johnson. It uses fewer comparisons in the worst case than the best previously known algorithms, binary insertion sort and merge sort, and for 20 years it was the sorting algorithm with the fewest known comparisons. Although not of practical significance, it remains of theoretical interest in connection with the problem of sorting with a minimum number of comparisons. The same algorithm may have also been independently discovered by Stanisław Trybuła and Czen Ping.

References