Interaction nets

Last updated

Interaction nets are a graphical model of computation devised by Yves Lafont in 1990 [1] as a generalisation of the proof structures of linear logic. An interaction net system is specified by a set of agent types and a set of interaction rules. Interaction nets are an inherently distributed model of computation in the sense that computations can take place simultaneously in many parts of an interaction net, and no synchronisation is needed. The latter is guaranteed by the strong confluence property of reduction in this model of computation. Thus interaction nets provide a natural language for massive parallelism. Interaction nets are at the heart of many implementations of the lambda calculus, such as efficient closed reduction [2] and optimal, in Lévy's sense, Lambdascope. [3]

Contents

Definitions

Interactions nets are graph-like structures consisting of agents and edges.

An agent of type and with arity has one principal port and auxiliary ports. Any port can be connected to at most one edge. Ports that are not connected to any edge are called free ports. Free ports together form the interface of an interaction net. All agent types belong to a set called signature.

An interaction net that consists solely of edges is called a wiring and usually denoted as . A tree with its root is inductively defined either as an edge , or as an agent with its free principal port and its auxiliary ports connected to the roots of other trees .

Graphically, the primitive structures of interaction nets can be represented as follows:

Primitives of Interaction Nets.png

When two agents are connected to each other with their principal ports, they form an active pair. For active pairs one can introduce interaction rules which describe how the active pair rewrites to another interaction net. An interaction net with no active pairs is said to be in normal form. A signature (with defined on it) along with a set of interaction rules defined for agents together constitute an interaction system.

Interaction calculus

Textual representation of interaction nets is called the interaction calculus [4] and can be seen as a programming language.

Inductively defined trees correspond to terms in the interaction calculus, where is called a name.

Any interaction net can be redrawn using the previously defined wiring and tree primitives as follows:

Interaction Net as Configuration.png

which in the interaction calculus corresponds to a configuration

,

where , , and are arbitrary terms. The ordered sequence in the left-hand side is called an interface, while the right-hand side contains an unordered multiset of equations. Wiring translates to names, and each name has to occur exactly twice in a configuration.

Just like in the -calculus, the interaction calculus has the notions of -conversion and substitution naturally defined on configurations. Specifically, both occurrences of any name can be replaced with a new name if the latter does not occur in a given configuration. Configurations are considered equivalent up to -conversion. In turn, substitution is the result of replacing the name in a term with another term if has exactly one occurrence in the term .

Any interaction rule can be graphically represented as follows:

Interaction Rule.png

where , and the interaction net on the right-hand side is redrawn using the wiring and tree primitives in order to translate into the interaction calculus as using Lafont's notation.

The interaction calculus defines reduction on configurations in more details than seen from graph rewriting defined on interaction nets. Namely, if , the following reduction:

is called interaction. When one of equations has the form of , indirection can be applied resulting in substitution of the other occurrence of the name in some term :

or .

An equation is called a deadlock if has occurrence in term . Generally only deadlock-free interaction nets are considered. Together, interaction and indirection define the reduction relation on configurations. The fact that configuration reduces to its normal form with no equations left is denoted as .

Properties

Interaction nets benefit from the following properties:

These properties together allow massive parallelism.

Interaction combinators

One of the simplest interaction systems that can simulate any other interaction system is that of interaction combinators. [5] Its signature is with and . Interaction rules for these agents are:

Graphically, the erasing and duplication rules can be represented as follows:

Examples of Interaction Nets.png

with an example of a non-terminating interaction net that reduces to itself. Its infinite reduction sequence starting from the corresponding configuration in the interaction calculus is as follows:

Non-deterministic extension

Interaction nets are essentially deterministic and cannot model non-deterministic computations directly. In order to express non-deterministic choice, interaction nets need to be extended. In fact, it is sufficient to introduce just one agent [6] with two principal ports and the following interaction rules:

Non-deterministic Agent.png

This distinguished agent represents ambiguous choice and can be used to simulate any other agent with arbitrary number of principal ports. For instance, it allows to define a boolean operation that returns true if any of its arguments is true, independently of the computation taking place in the other arguments.

See also

Related Research Articles

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Effective action</span> Quantum version of the classical action

In quantum field theory, the quantum effective action is a modified expression for the classical action taking into account quantum corrections while ensuring that the principle of least action applies, meaning that extremizing the effective action yields the equations of motion for the vacuum expectation values of the quantum fields. The effective action also acts as a generating functional for one-particle irreducible correlation functions. The potential component of the effective action is called the effective potential, with the expectation value of the true vacuum being the minimum of this potential rather than the classical potential, making it important for studying spontaneous symmetry breaking.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmerman (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In theoretical physics, a source field is a background field coupled to the original field as

In mathematics, a compact quantum group is an abstract structure on a unital separable C*-algebra axiomatized from those that exist on the commutative C*-algebra of "continuous complex-valued functions" on a compact quantum group.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations are fundamental formulas which link together the induced metric and second fundamental form of a submanifold of a Riemannian or pseudo-Riemannian manifold.

In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space at p to M:

Head grammar (HG) is a grammar formalism introduced in Carl Pollard (1984) as an extension of the context-free grammar class of grammars. Head grammar is therefore a type of phrase structure grammar, as opposed to a dependency grammar. The class of head grammars is a subset of the linear context-free rewriting systems.

Range concatenation grammar (RCG) is a grammar formalism developed by Pierre Boullier in 1998 as an attempt to characterize a number of phenomena of natural language, such as Chinese numbers and German word order scrambling, which are outside the bounds of the mildly context-sensitive languages.

In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalization scheme can depend on the type of particles that are being considered. For particles that can travel asymptotically large distances, or for low energy processes, the on-shell scheme, also known as the physical scheme, is appropriate. If these conditions are not fulfilled, one can turn to other schemes, like the minimal subtraction scheme.

The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.

Vasiliev equations are formally consistent gauge invariant nonlinear equations whose linearization over a specific vacuum solution describes free massless higher-spin fields on anti-de Sitter space. The Vasiliev equations are classical equations and no Lagrangian is known that starts from canonical two-derivative Frønsdal Lagrangian and is completed by interactions terms. There is a number of variations of Vasiliev equations that work in three, four and arbitrary number of space-time dimensions. Vasiliev's equations admit supersymmetric extensions with any number of super-symmetries and allow for Yang–Mills gaugings. Vasiliev's equations are background independent, the simplest exact solution being anti-de Sitter space. It is important to note that locality is not properly implemented and the equations give a solution of certain formal deformation procedure, which is difficult to map to field theory language. The higher-spin AdS/CFT correspondence is reviewed in Higher-spin theory article.

This article summarizes several identities in exterior calculus.

References

  1. Lafont, Yves (1990). "Interaction nets". Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL '90. ACM. pp. 95–108. doi:10.1145/96709.96718. ISBN   0897913434. S2CID   1165803.
  2. Mackie, Ian (2008). "An Interaction Net Implementation of Closed Reduction". Implementation and Application of Functional Languages: 20th International Symposium. Lecture Notes in Computer Science. 5836: 43–59. doi:10.1007/978-3-642-24452-0_3. ISBN   978-3-642-24451-3.
  3. van Oostrom, Vincent; van de Looij, Kees-Jan; Zwitserlood, Marijn (2010). "Lambdascope: Another optimal implementation of the lambda-calculus" (PDF). Archived from the original (PDF) on 2017-07-06.{{cite journal}}: Cite journal requires |journal= (help)
  4. Fernández, Maribel; Mackie, Ian (1999). "A calculus for interaction nets". Principles and Practice of Declarative Programming. Lecture Notes in Computer Science. Springer. 1702: 170–187. doi:10.1007/10704567. ISBN   978-3-540-66540-3. S2CID   19458687.
  5. Lafont, Yves (1997). "Interaction Combinators". Information and Computation. Academic Press, Inc. 137 (1): 69–101. doi: 10.1006/inco.1997.2643 .
  6. Fernández, Maribel; Khalil, Lionel (2003). "Interaction Nets with McCarthy's Amb: Properties and Applications". Nordic Journal of Computing. 10 (2): 134–162.

Further reading