Program counter

Last updated

Front panel of an IBM 701 computer introduced in 1952. Lights in the middle display the contents of various registers. The instruction counter is at the lower left. IBM 701console.jpg
Front panel of an IBM 701 computer introduced in 1952. Lights in the middle display the contents of various registers. The instruction counter is at the lower left.

The program counter (PC), [1] commonly called the instruction pointer (IP) in Intel x86 and Itanium microprocessors, and sometimes called the instruction address register (IAR), [2] [1] the instruction counter, [3] or just part of the instruction sequencer, [4] is a processor register that indicates where a computer is in its program sequence. [5] [nb 1]

Contents

Usually, the PC is incremented after fetching an instruction, and holds the memory address of ("points to") the next instruction that would be executed. [6] [nb 2]

Processors usually fetch instructions sequentially from memory, but control transfer instructions change the sequence by placing a new value in the PC. These include branches (sometimes called jumps), subroutine calls, and returns. A transfer that is conditional on the truth of some assertion lets the computer follow a different sequence under different conditions.

A branch provides that the next instruction is fetched from elsewhere in memory. A subroutine call not only branches but saves the preceding contents of the PC somewhere. A return retrieves the saved contents of the PC and places it back in the PC, resuming sequential execution with the instruction following the subroutine call.

Hardware implementation

In a simple central processing unit (CPU), the PC is a digital counter (which is the origin of the term "program counter") that may be one of several hardware registers. The instruction cycle [8] begins with a fetch, in which the CPU places the value of the PC on the address bus to send it to the memory. The memory responds by sending the contents of that memory location on the data bus. (This is the stored-program computer model, in which a single memory space contains both executable instructions and ordinary data. [9] ) Following the fetch, the CPU proceeds to execution, taking some action based on the memory contents that it obtained. At some point in this cycle, the PC will be modified so that the next instruction executed is a different one (typically, incremented so that the next instruction is the one starting at the memory address immediately following the last memory location of the current instruction).

Like other processor registers, the PC may be a bank of binary latches, each one representing one bit of the value of the PC. [10] The number of bits (the width of the PC) relates to the processor architecture. For instance, a “32-bit” CPU may use 32 bits to be able to address 232 units of memory. On some processors, the width of the program counter instead depends on the addressable memory; for example, some AVR microcontrollers have a PC which wraps around after 12 bits. [11]

If the PC is a binary counter, it may increment when a pulse is applied to its COUNT UP input, or the CPU may compute some other value and load it into the PC by a pulse to its LOAD input. [12]

To identify the current instruction, the PC may be combined with other registers that identify a segment or page. This approach permits a PC with fewer bits by assuming that most memory units of interest are within the current vicinity.

Consequences in machine architecture

Use of a PC that normally increments assumes that what a computer does is execute a usually linear sequence of instructions. Such a PC is central to the von Neumann architecture. Thus programmers write a sequential control flow even for algorithms that do not have to be sequential. The resulting “von Neumann bottleneck” led to research into parallel computing, [13] including non-von Neumann or dataflow models that did not use a PC; for example, rather than specifying sequential steps, the high-level programmer might specify desired function and the low-level programmer might specify this using combinatory logic.

This research also led to ways to making conventional, PC-based, CPUs run faster, including:

Consequences in high-level programming

Modern high-level programming languages still follow the sequential-execution model and, indeed, a common way of identifying programming errors is with a “procedure execution” in which the programmer's finger identifies the point of execution as a PC would. The high-level language is essentially the machine language of a virtual machine, [14] too complex to be built as hardware but instead emulated or interpreted by software.

However, new programming models transcend sequential-execution programming:

See also

Notes

  1. For modern processors, the concept of "where it is in its sequence" is too simplistic, as instruction-level parallelism and out-of-order execution may occur.
  2. In a processor where the incrementation precedes the fetch, the PC points to the current instruction being executed. In some processors, the PC points some distance beyond the current instruction; for instance, in the ARM7, the value of PC visible to the programmer points beyond the current instruction and beyond the delay slot. [7]

Related Research Articles

<span class="mw-page-title-main">Central processing unit</span> Central computer component which executes instructions

A central processing unit (CPU), also called a central processor, main processor, or just processor, is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).

<span class="mw-page-title-main">Machine code</span> Set of instructions executed by a computer

In computer programming, machine code is computer code consisting of machine language instructions, which are used to control a computer's central processing unit (CPU). For conventional binary computers machine code is "the binary representation of a computer program which is actually read and interpreted by the computer. A program in machine code consists of a sequence of machine instructions ."

<span class="mw-page-title-main">PDP-8</span> Minicomputer product line

The PDP-8 is a family of 12-bit minicomputers that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.

<span class="mw-page-title-main">Zilog Z80</span> 8-bit microprocessor

The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. The Z80 boasted fourteen registers compared to the 8080's seven, along with additional instructions for bit manipulation, making it a more powerful chip.

In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA.

A one-instruction set computer (OISC), sometimes referred to as an ultimate reduced instruction set computer (URISC), is an abstract machine that uses only one instruction – obviating the need for a machine language opcode. With a judicious choice for the single instruction and given arbitrarily many resources, an OISC is capable of being a universal computer in the same manner as traditional computers that have multiple instructions. OISCs have been recommended as aids in teaching computer architecture and have been used as computational models in structural computing research. The first carbon nanotube computer is a 1-bit one-instruction set computer.

<span class="mw-page-title-main">PIC microcontrollers</span> Line of single-chip microprocessors from Microchip Technology

PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1640 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, and is currently expanded as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.

In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps performed by different processor units with different parts of instructions processed in parallel.

In the history of computer hardware, some early reduced instruction set computer central processing units used a very similar architectural solution, now called a classic RISC pipeline. Those CPUs were: MIPS, SPARC, Motorola 88000, and later the notional CPU DLX invented for education.

<span class="mw-page-title-main">Instruction cycle</span> Basic operation cycle of a computer

The instruction cycle is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.

Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere.

A branch, jump or transfer is an instruction in a computer program that can cause a computer to begin executing a different instruction sequence and thus deviate from its default behavior of executing instructions in order. Branch may also refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction. Branch instructions are used to implement control flow in program loops and conditionals.

The National Semiconductor COP8 is an 8-bit CISC core microcontroller. COP8 is an enhancement to the earlier COP400 4-bit microcontroller family. COP8 main features are:

In computer architecture, a transport triggered architecture (TTA) is a kind of processor design in which programs directly control the internal transport buses of a processor. Computation happens as a side effect of data transports: writing data into a triggering port of a functional unit triggers the functional unit to start a computation. This is similar to what happens in a systolic array. Due to its modular structure, TTA is an ideal processor template for application-specific instruction set processors (ASIP) with customized datapath but without the inflexibility and design cost of fixed function hardware accelerators.

A modified Harvard architecture is a variation of the Harvard computer architecture that, unlike the pure Harvard architecture, allows memory that contains instructions to be accessed as data. Most modern computers that are documented as Harvard architecture are, in fact, modified Harvard architecture.

The PDP-11 architecture is a 16-bit CISC instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). It is implemented by central processing units (CPUs) and microprocessors used in PDP-11 minicomputers. It was in wide use during the 1970s, but was eventually overshadowed by the more powerful VAX architecture in the 1980s.

<span class="mw-page-title-main">WDC 65C816</span> 8/16-bit microprocessor

The W65C816S is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1983, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.

The Hack Computer is a theoretical computer design created by Noam Nisan and Shimon Schocken and described in their book, The Elements of Computing Systems: Building a Modern Computer from First Principles.  In using the term “modern”, the authors refer to a digital, binary machine that is patterned according to the von Neumann architecture model.

<span class="mw-page-title-main">WD16</span> Microprocessor produced by Western Digital

The WD16 is a 16-bit microprocessor introduced by Western Digital in October 1976. It is based on the MCP-1600 chipset, a general-purpose design that was also used to implement the DEC LSI-11 low-end minicomputer and the Pascal MicroEngine processor. The three systems differed primarily in their microcode, giving each system a unique instruction set architecture (ISA).

<span class="mw-page-title-main">COP400</span> 4-bit microcontroller family

The COP400 or COP II is a 4-bit microcontroller family introduced in 1977 by National Semiconductor as a follow-on product to their original PMOS COP microcontroller. COP400 family members are complete microcomputers containing internal timing, logic, ROM, RAM, and I/O necessary to implement dedicated controllers. Some COP400 devices were second-sourced by Western Digital as the WD4200 family. In the Soviet Union several COP400 microcontrollers were manufactured as the 1820 series.

References

  1. 1 2 Hayes, John P. (1978). Computer Architecture and Organization. McGraw-Hill. p. 245. ISBN   0-07-027363-4.
  2. Mead, Carver; Conway, Lynn (1980). Introduction to VLSI Systems . Reading, USA: Addison-Wesley. ISBN   0-201-04358-0.
  3. Principles of Operation, Type 701 and Associated Equipment (PDF). IBM. 1953.
  4. Harry Katzan (1971), Computer Organization and the System/370, Van Nostrand Reinhold Company, New York, USA, LCCCN 72-153191
  5. Bates, Martin (2011). "Microcontroller Operation". PIC Microcontrollers. Elsevier. p. 27–44. doi:10.1016/b978-0-08-096911-4.10002-3. ISBN   978-0-08-096911-4. Program Counter (PC) is a register that keeps track of the program sequence, by storing the address of the instruction currently being executed. It is automatically loaded with zero when the chip is powered up or reset. As each instruction is executed, PC is incremented (increased by one) to point to the next instruction.
  6. Silberschatz, Abraham; Gagne, Greg; Galvin, Peter B. (April 2018). Operating System Concepts. United States: Wiley. pp. 27, G-29. ISBN   978-1-119-32091-3.
  7. "ARM Developer Suite, Assembler Guide. Version 1.2". ARM Limited. 2001. Retrieved 2019-10-18.
  8. John L. Hennessy and David A. Patterson (1990), Computer Architecture: a quantitative approach, Morgan Kaufmann Publishers, Palo Alto, USA, ISBN   1-55860-069-8
  9. B. Randall (1982), The Origins of Digital Computers, Springer-Verlag, Berlin, D
  10. C. Gordon Bell and Allen Newell (1971), Computer Structures: Readings and Examples, McGraw-Hill Book Company, New York, USA
  11. Arnold, Alfred (2020) [1996, 1989]. "E. Predefined Symbols". Macro Assembler AS – User's Manual. V1.42. Translated by Arnold, Alfred; Hilse, Stefan; Kanthak, Stephan; Sellke, Oliver; De Tomasi, Vittorio. p. Table E.3: Predefined Symbols – Part 3. Archived from the original on 2020-02-28. Retrieved 2020-02-28. 3.2.12. WRAPMODE […] AS will assume that the processor's program counter does not have the full length of 16 bits given by the architecture, but instead a length that is exactly sufficient to address the internal ROM. For example, in case of the AT90S8515, this means 12 bits, corresponding to 4 Kwords or 8 Kbytes. This assumption allows relative branches from the ROM's beginning to the end and vice versa which would result in an out-of-branch error when using strict arithmetics. Here, they work because the carry bits resulting from the target address computation are discarded. […] In case of the abovementioned AT90S8515, this option is even necessary because it is the only way to perform a direct jump through the complete address space […]
  12. Walker, B. S. (1967). Introduction to Computer Engineering. London, UK: University of London Press. ISBN   0-340-06831-0.
  13. F. B. Chambers, D. A. Duce and G. P. Jones (1984), Distributed Computing, Academic Press, Orlando, USA, ISBN   0-12-167350-2
  14. Douglas Hofstadter (1980), Gödel, Escher, Bach: an eternal golden braid, Penguin Books, Harmondsworth, UK, ISBN   0-14-005579-7