IBM 610

Last updated
IBM 610
610b-soft.jpg
Control unit of the IBM 610 with keyboard
Also known asIBM 610 Auto-Point Computer
DeveloperJohn Lentz, as part of his work for the Watson Lab at Columbia University
Manufacturer IBM
Type Personal computer
Release date1957;66 years ago (1957)
Introductory price$55,000 (or rented for $1150 per month ($460 academic))
Units shipped180
Removable storage Punched paper tape
Mass800 pounds (360 kg)
Successor IBM 1620

The IBM 610 Auto-Point Computer is one of the first personal computers, in the sense of a computer to be used by one person whose previous experience with computing might only have been with desk calculators. It was controlled interactively by a keyboard. The principal designer of this machine was John Lentz, as part of his work for the Watson Lab at Columbia University.

Contents

The IBM 610 was introduced in 1957. [1] [2] It was small enough to easily fit in an office; it weighed about 800 pounds (360 kg). [3] It was designed to be used in a normal office, without any special electrical or air conditioning requirements. It used vacuum tubes, a magnetic drum, and punched paper tape readers and punchers. The input was from a keyboard and output was to an IBM electric typewriter, at eighteen characters per second. It was one of the first computers to be controlled from a keyboard. The term "auto-point" referred to the ability to automatically adjust the decimal point in floating-point arithmetic.

Its price was $55,000, or it could be rented for $1150 per month ($460 academic). 180 units were made. It was a slow and limited computer, and was generally replaced by the IBM 1620.

See also

Related Research Articles

<span class="mw-page-title-main">History of computing hardware</span> From early calculation aids to modern day computers

The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers.

<span class="mw-page-title-main">Punched card</span> Paper-based recording medium

A punched card is a piece of card stock that stores digital data using punched holes. Punched cards were once common in data processing and the control of automated machines.

<span class="mw-page-title-main">IBM 704</span> Vacuum-tube computer system

The IBM 704 is a large digital mainframe computer introduced by IBM in 1954. It was the first mass-produced computer with hardware for floating-point arithmetic. The IBM 704 Manual of operation states:

The type 704 Electronic Data-Processing Machine is a large-scale, high-speed electronic calculator controlled by an internally stored program of the single address type.

<span class="mw-page-title-main">IBM 604</span> Control panel programmable electronic calculating card punch

The IBM 604 Electronic Calculating Punch was the world's first mass-produced electronic calculator along with its predecessor the IBM 603. It was an electronic unit record machine that could perform multiple calculations, including division. It was invented and developed by Ralph Palmer, Jerrier Haddad and Byron Phelps. It was introduced by IBM in 1948.

<span class="mw-page-title-main">IBM 650</span> Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

<span class="mw-page-title-main">IBM 701</span> Vacuum-tube computer system

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in development, was IBM’s first commercial scientific computer and its first series production mainframe computer, which was announced to the public on May 21, 1952. It was invented and developed by Jerrier Haddad and Nathaniel Rochester based on the IAS machine at Princeton.

<span class="mw-page-title-main">IBM 709</span> Vacuum tube computer system

The IBM 709 was a computer system, initially announced by IBM in January 1957 and first installed during August 1958. The 709 was an improved version of its predecessor, the IBM 704, and was the third of the IBM 700/7000 series of scientific computers. The improvements included overlapped input/output, indirect addressing, and three "convert" instructions which provided support for decimal arithmetic, leading zero suppression, and several other operations. The 709 had 32,768 words of 36-bit magnetic core memory and could execute 42,000 add or subtract instructions per second. It could multiply two 36-bit integers at a rate of 5000 per second.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

<span class="mw-page-title-main">History of computing hardware (1960s–present)</span> Aspect of history

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as transistors and then integrated circuit (IC) chips. Around 1953 to 1959, discrete transistors started being considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Metal–oxide–semiconductor (MOS) large-scale integration (LSI) technology subsequently led to the development of semiconductor memory in the mid-to-late 1960s and then the microprocessor in the early 1970s. This led to primary computer memory moving away from magnetic-core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size, and power consumption of computers. These advances led to the miniaturized personal computer (PC) in the 1970s, starting with home computers and desktop computers, followed by laptops and then mobile computers over the next several decades.

<span class="mw-page-title-main">Keypunch</span> Device for punching holes into paper cards

A keypunch is a device for precisely punching holes into stiff paper cards at specific locations as determined by keys struck by a human operator. Other devices included here for that same function include the gang punch, the pantograph punch, and the stamp. The term was also used for similar machines used by humans to transcribe data onto punched tape media.

<span class="mw-page-title-main">IBM 305 RAMAC</span> First computer to use magnetic disk storage

The IBM 305 RAMAC was the first commercial computer that used a moving-head hard disk drive for secondary storage. The system was publicly announced on September 14, 1956, with test units already installed at the U.S. Navy and at private corporations. RAMAC stood for "Random Access Method of Accounting and Control", as its design was motivated by the need for real-time accounting in business.

<span class="mw-page-title-main">AN/FSQ-7 Combat Direction Central</span>

The AN/FSQ-7 Combat Direction Central, referred to as the Q7 for short, was a computerized command and control system for Cold War ground-controlled interception used in the USAF Semi-Automatic Ground Environment (SAGE) air defense network.

<span class="mw-page-title-main">Bendix G-15</span> 1956 computer design

The Bendix G-15 is a computer introduced in 1956 by the Bendix Corporation, Computer Division, Los Angeles, California. It is about 5 by 3 by 3 feet and weighs about 966 pounds (438 kg). The G-15 has a drum memory of 2,160 29-bit words, along with 20 words used for special purposes and rapid-access storage. The base system, without peripherals, cost $49,500. A working model cost around $60,000. It could also be rented for $1,485 per month. It was meant for scientific and industrial markets. The series was gradually discontinued when Control Data Corporation took over the Bendix computer division in 1963.

<span class="mw-page-title-main">IBM 702</span> Vacuum tube computer system

The IBM 702 was an early generation tube-based digital computer produced by IBM in the early to mid-1950s. It was the company's response to Remington Rand's UNIVAC—the first mainframe computer to use magnetic tapes. As these machines were aimed at the business market, they lacked the leading-edge computational power of the IBM 701 and ERA 1103, which were favored for scientific computing, weather forecasting, the aircraft industry, and the military and intelligence communities.

<span class="mw-page-title-main">IBM 7070</span> Decimal computer introduced by IBM in 1958

IBM 7070 is a decimal-architecture intermediate data-processing system that was introduced by IBM in 1958. It was part of the IBM 700/7000 series, and was based on discrete transistors rather than the vacuum tubes of the 1950s. It was the company's first transistorized stored-program computer.

The IBM 608 Transistor Calculator, a plugboard-programmable unit, was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the world's first all-transistorized calculator to be manufactured for the commercial market. Announced in April 1955, it was released in December 1957. The 608 was withdrawn from marketing in April 1959.

<span class="mw-page-title-main">IBM Naval Ordnance Research Calculator</span> 1950s computer

The IBM Naval Ordnance Research Calculator (NORC) was a one-of-a-kind first-generation computer built by IBM for the United States Navy's Bureau of Ordnance. It went into service in December 1954 and was likely the most powerful computer at the time. The Naval Ordnance Research Calculator (NORC), was built at the Watson Scientific Computing Laboratory under the direction of Wallace Eckert.

<span class="mw-page-title-main">Vacuum-tube computer</span> Earliest electronic computer design

A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906. The first example of using vacuum tubes for computation, the Atanasoff–Berry computer, was demonstrated in 1939. Vacuum-tube computers were initially one-of-a-kind designs, but commercial models were introduced in the 1950s and sold in volumes ranging from single digits to thousands of units. By the early 1960s vacuum tube computers were obsolete, superseded by second-generation transistorized computers.

<span class="mw-page-title-main">Monrobot XI</span>

The Monroe Calculating Machine Mark XI was a general-purpose stored-program electronic digital computer introduced in 1960 by the Monroe Calculating Machine Division of Litton Industries. The system was marketed for "primarily for billing, and invoice writing", but could also be used for low-end scientific computing.

<i>Where in the World is Carmen Sandiego?</i> (Prodigy video game) Video game

Where in the World is Carmen Sandiego? is a game within the Carmen Sandiego franchise made for the Prodigy Interactive online service, a "special edition" and Prodigy service adaptation of the 1985 Broderbund educational game of the same name.

References

  1. Inc, Ziff Davis (1984-03-06). PC Mag. Ziff Davis, Inc. p. 84.{{cite book}}: |last= has generic name (help)
  2. Peddie, Jon (2013-06-13). The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR. Springer Science & Business Media. p. 176. ISBN   9781447149323.
  3. Weik, Martin H. (Mar 1961). "IBM 610". ed-thelen.org. A Third Survey of Domestic Electronic Digital Computing Systems.