807 (vacuum tube)

Last updated
807
807and6L6.jpg
Three 807s and an early 6L6,

Left, British Emitron brand 807
Second Left, Canadian Westinghouse brand 807
Second Right, Dutch Philips brand military 807/ATS25

Right, U.S. Mullard-B.V.A branded 6L6G

Contents

ClassificationBeam-power tetrode
Service Class-A amplifier, (single-ended)

Class-AB amplifier, (push–pull)

Class-C amplifier, (radio frequency)
Cathode
Cathode typeIndirectly heated
Heater voltage6.3
Heater current900 mA
Anode
Max dissipation Watts25 W
Max voltage600 V
Socket connections
American 5 Pin, (UY)

Pin 1, Heater
Pin 2, Screen grid, g2
Pin-3, Control grid, g1
Pin-4, Cathode-beam plates
Pin-5, Heater

Top cap, Anode/plate
Typical class-A amplifier operation
Anode voltage300 V, (600 V)
Anode current83 mA, (40-75 mA)
Screen voltage250 V, (300 V)
Bias voltage-12.5 V, (-29.5 V)
Anode resistance24 kΩ
Typical class-C amplifier operation
Power output24 W, (plate dissipation = 16.5 W max)
Anode voltage475 V
Anode current83 mA
Screen voltage300 V (screen dissipation = 2.5 W max)
Bias voltage-50 V
Typical class-AB amplifier operation
(Values are for two tubes)
Anode voltage400 V (AB1), 600 V (AB2)
Anode current90-119 mA (AB1), 90-240 mA (AB2),(zero to max signal)
Screen voltage300 V (AB1), 300 V (AB2)
Bias voltage-45 V (AB1), -25--30 V (AB2)
References
Philips Valve Data Book, Philips Electrical Industries, 69-73 Clarence Street, Sydney, Radio Valve Application Division, 1958
Radio Valve Data, Eighth Ed. Iliffe Books Ltd., London, 1966
807 tube pinout diagram 807 tube pinout.png
807 tube pinout diagram

The 807 is a beam tetrode vacuum tube, widely used in audio- and radio-frequency power amplifier applications.

Audio uses

807s were used in audio power amplifiers, both for public address and Hi-Fi application, usually being run in push-pull pairs in class AB1 or AB2 giving up to 120 watts of usable power. The plate voltage limit is 750 volts and the screen grid limited to 300 volts. Because of the 300 volt screen grid voltage limit, the 807 cannot be triode connected for high power applications. Failure to observe this precaution will cause screen grid failure. Less commonly a single 807 was used in a pure class-A, single-ended audio output stage delivering about 10 watts.

RF uses

The 807 is fully rated to 60 MHz, derated to 55% at 125 MHz in Class C, Plate-modulated operation, thus they were popular with amateur radio operators (radio hams). In this application a single 807 could be run in class-C as an oscillator or amplifier which could be keyed on and off to transmit Morse Code in CW mode. For voice transmission on AM a final amplifier with one or more 807s, up to about four, could be connected in parallel running class-C. Connecting multiple 807s in parallel produced more power to feed to the antenna. Often the modulator stage (simply a transformer-coupled audio amplifier for A.M., with the secondary of its output transformer in series with the anode supply of the final amplifier), was also constructed using 807s. Many hams found multiple paralleled 807s a cheaper alternative to a single larger valve, such as a single 813, as many military surplus 807s became available cheaply after World War II. In Australia 807s are affectionately referred to as "stubbies" because they are almost as ubiquitous as that common Australian beer container.
The class C operational values in the info box at the right are for anode modulated A.M. operation; for CW operation a maximum anode voltage of 600 is permissible, whereby the anode current increases to 100 mA and the anode/plate dissipation rises to 25 watts. The screen voltage is the same, at 300, but its dissipation rises to 3.5 watts. 37 watts of R.F. power is produced from 220 mW of drive but only a 50% duty cycle is allowed. The maximum allowable negative control grid, g1 excursion allowable is -200 volts and average control grid current is 5mA in both A.M. and CW modes. [1] Later versions could be used on CW with a supply voltage up to 750 V and a current of 100 mA to produce 50-55 watts of output power.

Differences from 6L6

The electrically similar 6L6 was not favored by hams because high transient voltages on the anode when operating in class C could cause a flashover between pins 2 and 3 on the octal base, whereas the 807 had the anode connected to a top cap, physically distant from all the base pins.

Derivatives

The 1624 (VT-165) is an 807 variant with a directly heated filamentary cathode operating at 2.5 V, 2 A.

The 1625 (VT-136) is an 807 variant with a 12.6 V heater and a 7-pin base. These tubes were used as RF power amplifiers in some of the SCR-274 and AN/ARC-5 "command set" transmitters of WW2. Postwar, 1625 tubes flooded the surplus market, and were available for pennies apiece. Surplus 1625s found some commercial use, notably the use of a pair as modulator tubes in the Heathkit DX-100 amateur transmitter.

The HY-69 is an 807 variant with a 5-pin base and a directly heated filamentary cathode operating at 6.3 V, 1.6 A.

The 5933/807W is a ruggedized military version of the 807. It uses a shorter, straight-sided T12 bulb, which provides better element support for improved microphonics and shock/vibration resistance.

The ATS-25 is a military version with ceramic base.

The Г-807 (G-807) is a Soviet/Russian version. The 6П7С (6P7S) is similar to Г-807, but with an 8-pin octal base.

The 807 also found some use as a horizontal output tube in early TV receivers, particularly those manufactured by DuMont. The 807 design (with some "value engineering" to reduce production cost) was the basis for the first application-specific horizontal sweep tubes such as the 6BG6G and 6CD6G. The redesign mainly involved the omission of some of the internal RF shielding, and the substitution of a bakelite octal base for the micanol or ceramic 5-pin.

In turn, these low cost sweep tube derivatives found some use as RF power amplifiers in homebrew amateur radio transmitters in the 1950s.

Slang

Ham operators in the US sometimes use the term "807" to refer to bottles of beer due to the shape of the tube. [2] [3]

See also

Related Research Articles

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">KT66</span>

KT66 is the designator for a beam power tube introduced by Marconi-Osram Valve Co. Ltd. (M-OV) of Britain in 1937 and marketed for application as a power amplifier for audio frequencies and driver for radio frequencies. The KT66 is a beam tetrode that utilizes partially collimated electron beams to form a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over comparable power pentodes. In the 21st century, the KT66 is manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.

<span class="mw-page-title-main">Tube socket</span> Plug-in vacuum tube holder

Tube sockets are electrical sockets into which vacuum tubes can be plugged, holding them in place and providing terminals, which can be soldered into the circuit, for each of the pins. Sockets are designed to allow tubes to be inserted in only one orientation. They were used in most tube electronic equipment to allow easy removal and replacement. When tube equipment was common, retailers such as drug stores had vacuum tube testers, and sold replacement tubes. Some Nixie tubes were also designed to use sockets.

<span class="mw-page-title-main">6L6</span> Vacuum tube

6L6 is the designator for a beam power tube introduced by Radio Corporation of America in April 1936 and marketed for application as a power amplifier for audio frequencies. The 6L6 is a beam tetrode that utilizes formation of a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over power pentodes. The 6L6 was the first successful beam power tube marketed. In the 21st century, variants of the 6L6 are manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.

<span class="mw-page-title-main">All American Five</span> American radio with 5 vacuum tubes

The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.

<span class="mw-page-title-main">Beam tetrode</span>

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. The first beam tetrode marketed was the Marconi N40, introduced in 1935. Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.

<span class="mw-page-title-main">Linear amplifier</span> Electronic circuit

A linear amplifier is an electronic circuit whose output is proportional to its input, but capable of delivering more power into a load. The term usually refers to a type of radio-frequency (RF) power amplifier, some of which have output power measured in kilowatts, and are used in amateur radio. Other types of linear amplifier are used in audio and laboratory equipment. Linearity refers to the ability of the amplifier to produce signals that are accurate copies of the input. A linear amplifier responds to different frequency components independently, and tends not to generate harmonic distortion or intermodulation distortion. No amplifier can provide perfect linearity however, because the amplifying devices—transistors or vacuum tubes—follow nonlinear transfer function and rely on circuitry techniques to reduce those effects. There are a number of amplifier classes providing various trade-offs between implementation cost, efficiency, and signal accuracy.

<span class="mw-page-title-main">EL34</span> Vacuum tube (valve)

The EL34 is a thermionic vacuum tube of the power pentode type. The EL34 was introduced in 1955 by Mullard, who were owned by Philips. The EL34 has an octal base and is found mainly in the final output stages of audio amplification circuits; it was also designed to be suitable as a series regulator by virtue of its high permissible voltage between heater and cathode and other parameters. The American RETMA tube designation number for this tube is 6CA7. The USSR analog was 6P27S.

A radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. Radio waves are electromagnetic waves with frequencies between about 30 Hz and 300 GHz. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. Transmitters are necessary parts of all systems that use radio: radio and television broadcasting, cell phones, wireless networks, radar, two way radios like walkie talkies, radio navigation systems like GPS, remote entry systems, among numerous other uses.

Vacuum tubes produced in the former Soviet Union and in present-day Russia carry their own unique designations. Some confusion has been created in "translating" these designations, as they use Cyrillic rather than Latin characters.

<span class="mw-page-title-main">GU-50</span>

The GU-50 is a power pentode vacuum tube intended for 50 watt operation as a linear RF amplifier on frequencies up to 120 MHz. It is, in fact, a Soviet-produced copy of the Telefunken LS-50 power pentode, possibly reverse-engineered from German (Wehrmacht) military radios captured during World War II, or based on documentation, machines and materials captured as a trophy. It is one of the more unusual types of tube because of its non-standard 8-pin base and a metal "cap" with a plastic "handle" on top of the envelope - which is meant to ease extracting the tube from its socket. One stock Russian-produced socket includes a rugged die-cast metal cage-like enclosure for the tube with spring-loaded locking lid.. Another stock Russian-produced socket is stamped of light aluminium sheet metal, without a lid on top.

A valve audio amplifier (UK) or vacuum tube audio amplifier (US) is a valve amplifier used for sound reinforcement, sound recording and reproduction.

The KT88 is a beam tetrode/kinkless tetrode vacuum tube for audio amplification.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

<span class="mw-page-title-main">833A</span> Type of vacuum tube

The 833A is a vacuum tube constructed for medium power oscillator or class B or C amplifier applications. It is a medium-mu power triode with 300 watts CCS or 350 watts ICAS anode dissipation. The long grid and anode leads, plus high internal capacitance, limits this tube to 15-30 MHz maximum frequency. Being medium mu, it is normally not suitable for grounded grid operation.

<span class="mw-page-title-main">4-1000A</span>

The 4-1000A/8166 is a radial-beam tetrode designed for use in radio transmitters. The 4-1000A is the largest of a series of tubes including the 4-65A, 4-125A, 4-250A, and the 4-400A. These tubes share a common naming convention in which the first number identifies the number of elements contained within the tube; i.e., the number “4” identifies the tube as a tetrode which contains four elements, and the second number indicates the maximum continuous power dissipation of the anode in Watts. The entire family of tubes can be used as oscillators, modulators, and amplifiers.

References

  1. R.C.A. Air-Cooled Transmitting Tubes, Technical Manual TT3, R.C.A. Manufacturing Company Ltd. Harrison, New Jersey, 1938
  2. "Ham Speak – Know the Lingo". QRZ.com. Retrieved 9 May 2012.
  3. Midwestern Journal of Language and Folklore. Department of English and Journalism, Indiana State University. 1978. ...amateur slang such as handle (the name of an operator), lid (a poor operator), rig (radio set, equipment), 807 (a can of beer – from resemblance to a now obsolete transmitting tube), and XYL (ex-young lady: wife).