Valve audio amplifier

Last updated

A valve audio amplifier (UK) or vacuum tube audio amplifier (US) is a valve amplifier used for sound reinforcement, sound recording and reproduction.

Contents

Until the invention of solid state devices such as the transistor, all electronic amplification was produced by valve (tube) amplifiers. While solid-state devices prevail in most audio amplifiers today, valve audio amplifiers are still used where their audible characteristics are considered pleasing, for example in music performance or music reproduction.

Instrument and vocal amplification

Valve amplifiers for guitars (and to a lesser degree vocals and other applications) have different purposes from those of hi-fi amplifiers. The purpose is not necessarily to reproduce sound as accurately as possible, but rather to fulfill the musician's concept of what the sound should be. For example, distortion is almost universally considered undesirable in hi-fi amplifiers but may be considered a desirable characteristic in performance.

Small signal circuits are often deliberately designed to have very high gain, driving the signal far outside the linear range of the tube circuit, to deliberately generate large amounts of harmonic distortion. The distortion and overdrive characteristics of valves are quite different from transistors (not least the amount of voltage headroom available in a typical circuit) and this results in a distinctive sound. Amplifiers for such performance applications typically retain tone and filter circuits that have largely disappeared from modern hi-fi products. Amplifiers for guitars in particular may also include a number of "effects" functions.

Origins of electric guitar amplification

The electric guitar originates from Rickenbacker in the 1930s but its modern form was popularised by Fender and Gibson (notably the Fender Telecaster (1951) & Stratocaster (1954) and Gibson Les Paul (1952) during the 1950s. The earliest guitar amplifiers were probably audio amplifiers made for other purposes and pressed into service, but the electric guitar and its amplification quickly developed a life of its own, supported by specialist manufacturers.

Rear view of a valve combo guitar amplifier. Visible are two glass 6L6 output tubes, six smaller 12AX7 preamp tubes in their metal tube retainers and both the power transformer and the output transformer. Trace Elliot Bonneville rear view.jpg
Rear view of a valve combo guitar amplifier. Visible are two glass 6L6 output tubes, six smaller 12AX7 preamp tubes in their metal tube retainers and both the power transformer and the output transformer.

Guitar amplifiers are often designed so they can, when desired by the guitarist, distort and create a tone rich in harmonics and overtones. The characteristics of the tube and the circuit directly influence the nature of the sound produced. Even the power supply can influence the tonal shape, with relatively undersized power supply capacitors producing a characteristic "sag" at instants of peak output and power draw, and subsequent recovery, that is often considered musically engaging. [1] In addition, guitarists may employ acoustic feedback, further modifying the resulting sound (noting that the feedback signal has a slight time lag relative to the original signal).

Guitar amplifiers are typically designed to withstand a lot of abuse both electrically and physically (since guitarists often travel to gigs, etc.) In large systems the amplifier is separate from the speaker enclosure(s), but in smaller systems it is often integrated, forming a so-called "combo". Since the amplifier is usually at the top of the combo, the tubes often hang upside down facing the body of the enclosure. They may be held in with clips.

Most modern valve guitar amplifiers use a class AB1 push-pull circuit with a pair of power pentodes or beam tetrodes, 6L6 or EL34 but occasionally KT88, 6550, or the lower-power EL84 in Ultra-Linear connection. The output stage is preceded by a voltage amplification stage (pentode or twin triode) and a phase-splitter (twin triode). Twin triodes with two identical sections in one envelope are used, usually the noval types 12AT7, 12AU7, or 12AX7 or equivalents, less usually the octal 6SN7.

Amplifiers for sound reproduction

Early development

The earliest mass usage of valve audio amplifiers was for telephony. Valve amplifiers were critical in development of long-distance telephone circuits and submarine telephone cables. Radio applications followed soon after, where valves were used for both the audio (AF) and radio (RF) circuitry. (RF is outside the scope of this article, see valve amplifier).

Among the first applications of sound recording and electronic replay around the 1920s was its use in many cinemas equipping for exhibiting the new 'talkies'. Cinema sound systems of this period were predominantly supplied by "Westrex", related to the Western Electric company, a telecoms supplier, who were also the makers of the 300B DHT tube that today is central to current production DH-SET audiophile amplification.

Amplifiers during this period typically used Directly Heated tubes in a Class A Single-Ended Triode circuit. Power output ranged from a few watts to perhaps 20 watts for an exceptionally powerful amplifier (modern semiconductor amplifiers produce much higher power). Today this type of circuit retains a niche following at the very extreme of audiophile hi-fi, where it is often referred as DH-SET.

Prior to WWII, almost all electronic amplifiers were triodes used without feedback. The inherent, albeit imperfect, linearity of tubes makes it possible to get acceptable distortion performance without correction. Amplitude distortion in a class A triode stage can be small if care is taken to prevent the anode current from becoming too small and ensuring that grid current does not flow at any point. In this case, distortion is largely relatively unobjectionable second harmonic, with percentage closely proportional to the output amplitude. Adding modest negative feedback improves linearity further. Pentodes of the same power dissipation are capable of higher output power than triodes, but distortion is higher and more objectionable.

1940s and 1950s

During the post-war period, widespread adoption of negative feedback in the push pull topology yielded greater power and linearity, notably following the publication in 1947 of the Williamson amplifier, which set the standard (and the dominant topology) for what was to follow.

Widespread adoption of push pull allowed smaller (and thus cheaper) transformers,[ citation needed ] combined with more power (typically 10 to 20 watts) to handle peaks. The high fidelity industry was born.

Other developments included (among others):

Tube hi-fi in the 1960s

Conceptual diagram of a poweramplifier with a split-load phase inverter and push-pull EL34 pentodes endstage Tube push pull poweramplifier.PNG
Conceptual diagram of a poweramplifier with a split-load phase inverter and push-pull EL34 pentodes endstage

Valve amplification peaked as the mainstream technology during the 1960s and 70s, with device and circuits being highly developed. There have been only minor refinements since then.

The last generation of power tubes, typified by KT66, EL34 and KT88, represent the pinnacle of the technology and of production quality.[ citation needed ] Valve amplifiers produced since that time usually use one of these tubes, which have remained in continuous production (apart from KT66) ever since. Output power was typically 20 watts, exceptionally 35W.

Small signal valves overwhelmingly changed from octal base tubes, notably the audio tube of choice, the 6SN7 family, to the smaller and cheaper noval base ECC81, ECC82, ECC83 (UK, in the US known as 12AX7,12AT7, etc.). The lower-power noval base EL84 power pentode was widely used in less expensive 10-watt ultralinear power amplifiers, still of high fidelity.

Commercial tube manufacturers developed designs based on their own products, most notably the Mullard 5-10 circuit. This design and the Williamson were widely implemented and imitated, with or without crediting the originator.

Automobile amplifiers

Valve radios and amplifiers were used in automobiles until they were displaced by transistorized radios. Transistors had the major advantage of working off the voltage provided by a car battery. Early radios required a power unit to convert the battery voltage to a value high enough for the valves. Later radios used special valves that were designed to operate directly from a 12 volt supply. [2] These later radios were hybrid designs which used transistors only for the audio output stages because a 12 volt power amplifier valve was not practical. For this and other applications, transistors are smaller, cheaper, more durable, use less power, run cooler, and do not need to warm up.

Some enthusiasts prefer "tube amps", so a small number of valve car stereos are still made. Manufacturers include Milbert Amplifiers, Blade, Manley, and Sear Sound. Some are hybrid designs with transistors and valves.

Valve preamplifiers

Due to the very poor technical performance of early gramophones, the lack of standardised equalisations, poor components and accessories (including loudspeakers), preamplifiers historically contained extensive and very flexible equalization and tone and filter circuits designed to adjust the frequency response of the amplifier and so the sound produced by the system.

Valve preamplifiers use triodes or low-noise pentodes (EF86). Mains hum from the heater filaments is a potential problem in low-level valve stages. Modern amplifiers invariably run from the mains; as there is little need to minimise costs in expensive valve amplifiers, the heater supply is often rectified and even regulated to reduce hum to an absolute minimum.

A representative valve preamp from the 1950s is the Leak 'varislope' series of preamps, which included a switchable rumble filter, a switchable scratch filter with selectable slopes and corner frequency, continuously variable treble and bass tone controls and a selection of 4 different gramophone equalisations (RIAA, ortho, RCA, 78).

Valve sound

Amplifiers from and prior to this period often have a distinctive sound that today is still widely referred to as "valve sound" and "warm". This tone is not strictly caused by the use of valves rather than transistors; it is merely a sound that was originally associated with amplifiers built using valves simply because that is what was available at the time. The origins of that particular sound are in part due to:

Factors relevant to valve equipment not designed to high-fidelity standards:

Notable historic designs

Quad II power amplifier Harumphy.Quad ii.jpg
Quad II power amplifier

In addition to a range of commodity valve amplifiers, some amplifiers were made which are still highly regarded today. Among the best known are:

Technical information

Various basic circuits have been used in designs and in various approaches to construction.

See also

Related Research Articles

<span class="mw-page-title-main">Compactron</span> Type of vacuum tube

Compactrons are a type of thermionic valve, or vacuum tube, which contain multiple electrode structures packed into a single enclosure. They were designed to compete with early transistor electronics and were used in televisions, radios, and similar roles.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Audio power amplifier</span> Audio amplifier with power output sufficient to drive a loudspeaker

An audio power amplifier is an electronic amplifier that amplifies low-power electronic audio signals, such as the signal from a radio receiver or an electric guitar pickup, to a level that is high enough for driving loudspeakers or headphones. Audio power amplifiers are found in all manner of sound systems including sound reinforcement, public address, home audio systems and musical instrument amplifiers like guitar amplifiers. It is the final electronic stage in a typical audio playback chain before the signal is sent to the loudspeakers.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Push–pull output</span> Type of electronic circuit

A push–pull amplifier is a type of electronic circuit that uses a pair of active devices that alternately supply current to, or absorb current from, a connected load. This kind of amplifier can enhance both the load capacity and switching speed.

The Williamson amplifier is a four-stage, push-pull, Class A triode-output valve audio power amplifier designed by D. T. N. Williamson during World War II. The original circuit, published in 1947 and addressed to the worldwide do it yourself community, set the standard of high fidelity sound reproduction and served as a benchmark or reference amplifier design throughout the 1950s. The original circuit was copied by hundreds of thousands amateurs worldwide. It was an absolute favourite on the DIY scene of the 1950s, and in the beginning of the decade also dominated British and North American markets for factory-assembled amplifiers.

<span class="mw-page-title-main">Beam tetrode</span>

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. The first beam tetrode marketed was the Marconi N40, introduced in 1935. Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.

Founded by David Hafler and Ed Laurent in Philadelphia, Pennsylvania in 1955, Dynaco was an American hi-fi audio system manufacturer popular in the 1960s and 1970s for its wide range of affordable, yet high quality audio components.. Its best known product was the ST-70 tube stereo amplifier. They also manufactured other tube and solid state amplifiers, preamplifiers, radio tuners and bookshelf loudspeakers. Dynaco was liquidated in 1980, and the trademark is now owned by Radial Engineering Ltd.

<span class="mw-page-title-main">Pentode</span> Vacuum tube with five electrodes

A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode was developed from the screen-grid tube or shield-grid tube by the addition of a grid between the screen grid and the plate. The screen-grid tube was limited in performance as an amplifier due to secondary emission of electrons from the plate. The additional grid is called the suppressor grid. The suppressor grid is usually operated at or near the potential of the cathode and prevents secondary emission electrons from the plate from reaching the screen grid. The addition of the suppressor grid permits much greater output signal amplitude to be obtained from the plate of the pentode in amplifier operation than from the plate of the screen-grid tube at the same plate supply voltage. Pentodes were widely manufactured and used in electronic equipment until the 1960s to 1970s, during which time transistors replaced tubes in new designs. During the first quarter of the 21st century, a few pentode tubes have been in production for high power radio frequency applications, musical instrument amplifiers, home audio and niche markets.

LEAK is the brand name for high-fidelity audio equipment made by H. J. Leak & Co. Ltd, of London, England. The company was founded in 1934 by Harold Joseph Leak and was sold to the Rank Organisation in January 1969. During the 1950s and 1960s, the company produced high-quality amplifiers, radio tuners, loudspeakers, pickups, tonearms and a turntable. The sale of the business to Rank saw an expanded range of models, and considerable further development of loudspeakers, but Rank was not able to position the brand to counter competition from Japanese electronics manufacturers, so by the late 1970s, electronics and speaker production ceased under the LEAK name.

<span class="mw-page-title-main">Single-ended triode</span> Vacuum tube electronic amplifier that uses a single triode to produce an output

A single-ended triode (SET) is a vacuum tube electronic amplifier that uses a single triode to produce an output, in contrast to a push-pull amplifier which uses a pair of devices with antiphase inputs to generate an output with the wanted signals added and the distortion components subtracted. Single-ended amplifiers normally operate in Class A; push-pull amplifiers can also operate in Classes AB or B without excessive net distortion, due to cancellation.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

<span class="mw-page-title-main">Distortion (music)</span> Type of electronic audio manipulation

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may also be used with other electric instruments such as electric bass, electric piano, synthesizer and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. While overdriven tube amps are still used to obtain overdrive, especially in genres like blues and rockabilly, a number of other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

The KT88 is a beam tetrode/kinkless tetrode vacuum tube for audio amplification.

Ultra-linear electronic circuits are those used to couple a tetrode or pentode vacuum-tube to a load.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

<span class="mw-page-title-main">Tube sound</span> Characteristic quality of sounds from vacuum tube amplifiers

Tube sound is the characteristic sound associated with a vacuum tube amplifier, a vacuum tube-based audio amplifier. At first, the concept of tube sound did not exist, because practically all electronic amplification of audio signals was done with vacuum tubes and other comparable methods were not known or used. After introduction of solid state amplifiers, tube sound appeared as the logical complement of transistor sound, which had some negative connotations due to crossover distortion in early transistor amplifiers. However, solid state amplifiers have been developed to be flawless and the sound is later regarded neutral compared to tube amplifiers. Thus the tube sound now means 'euphonic distortion.' The audible significance of tube amplification on audio signals is a subject of continuing debate among audio enthusiasts.

A Virtual Valve Amplifier (VVA) is software algorithm designed and sold by Diamond Cut Productions, Inc. for simulating the sound of various valve amplifier designs. It can be found within their DC8 and Forensics8 software programs.

In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. A class A amplifier is conducting through all the period of the signal; Class B only for one-half the input period, class C for much less than half the input period. A Class D amplifier operates its output device in a switching manner; the fraction of the time that the device is conducting is adjusted so a pulse-width modulation output is obtained from the stage.

References

  1. "Class AB Power Supply Ripple".
  2. Mullard ECH83, EBF83 are but two such examples.

Other sources

Further reading