Light-emitting electrochemical cell

Last updated

A light-emitting electrochemical cell (LEC or LEEC) is a solid-state device that generates light from an electric current (electroluminescence). LECs are usually composed of two metal electrodes connected by (e.g. sandwiching) an organic semiconductor containing mobile ions. Aside from the mobile ions, their structure is very similar to that of an organic light-emitting diode (OLED).

LECs have most of the advantages of OLEDs, as well as additional ones:

There are two distinct types of LECs, those based on inorganic transition metal complexes (iTMC) or light emitting polymers. iTMC devices are often more efficient than their LEP based counterparts due to the emission mechanism being phosphorescent rather than fluorescent. [7]

While electroluminescence had been seen previously in similar devices, the invention of the polymer LEC is attributed to Pei et al. [8] Since then, numerous research groups and a few companies have worked on improving and commercializing the devices.

In 2012 the first inherently stretchable LEC using an elastomeric emissive material (at room temperature) was reported. Dispersing an ionic transition metal complex into an elastomeric matrix enables the fabrication of intrinsically stretchable light-emitting devices that possess large emission areas (~175 mm2) and tolerate linear strains up to 27% and repetitive cycles of 15% strain. This work demonstrates the suitability of this approach to new applications in conformable lighting that require uniform, diffuse light emission over large areas. [9]

In 2012 fabrication of organic light-emitting electrochemical cells (LECs) using a roll-to-roll compatible process under ambient conditions was reported. [10]

In 2017, a new design approach developed by a team of Swedish researchers promised to deliver substantially higher efficiency: 99.2 cd A−1 at a bright luminance of 1910 cd m−2. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Organic electronics</span> Field of materials science

Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry.

<span class="mw-page-title-main">Electroluminescence</span> Optical and electrical phenomenon

Electroluminescence (EL) is an optical and electrical phenomenon, in which a material emits light in response to the passage of an electric current or to a strong electric field. This is distinct from black body light emission resulting from heat (incandescence), chemical reactions (chemiluminescence), reactions in a liquid (electrochemiluminescence), sound (sonoluminescence), or other mechanical action (mechanoluminescence).

<span class="mw-page-title-main">OLED</span> Diode that emits light from an organic compound

An organic light-emitting diode (OLED), also known as organic electroluminescentdiode, is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This organic layer is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, and portable systems such as smartphones and handheld game consoles. A major area of research is the development of white OLED devices for use in solid-state lighting applications.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

Poly(<i>p</i>-phenylene vinylene) Chemical compound

Poly(p-phenylene vinylene) (PPV, or polyphenylene vinylene) is a conducting polymer of the rigid-rod polymer family. PPV is the only polymer of this type that can be processed into a highly ordered crystalline thin film. PPV and its derivatives are electrically conducting upon doping. Although insoluble in water, its precursors can be manipulated in aqueous solution. The small optical band gap and its bright yellow fluorescence makes PPV a candidate in applications such as light-emitting diodes (LED) and photovoltaic devices. Moreover, PPV can be doped to form electrically conductive materials. Its physical and electronic properties can be altered by the inclusion of functional side groups.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

<span class="mw-page-title-main">Flexible organic light-emitting diode</span> Type of computer monitor

A flexible organic light-emitting diode (FOLED) is a type of organic light-emitting diode (OLED) incorporating a flexible plastic substrate on which the electroluminescent organic semiconductor is deposited. This enables the device to be bent or rolled while still operating. Currently the focus of research in industrial and academic groups, flexible OLEDs form one method of fabricating a rollable display.

<span class="mw-page-title-main">PEDOT:PSS</span> Polymer

poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a polymer mixture of two ionomers. One component in this mixture is made up of polystyrene sulfonate which is a sulfonated polystyrene. Part of the sulfonyl groups are deprotonated and carry a negative charge. The other component poly(3,4-ethylenedioxythiophene) (PEDOT) is a conjugated polymer and carries positive charges and is based on polythiophene. Together the charged macromolecules form a macromolecular salt.

Phosphorescent organic light-emitting diodes (PHOLED) are a type of organic light-emitting diode (OLED) that use the principle of phosphorescence to obtain higher internal efficiencies than fluorescent OLEDs. This technology is currently under development by many industrial and academic research groups.

<span class="mw-page-title-main">PEDOT-TMA</span> Chemical compound

Poly(3,4-ethylenedioxythiophene)-tetramethacrylate or PEDOT-TMA is a p-type conducting polymer based on 3,4-ethylenedioxylthiophene or the EDOT monomer. It is a modification of the PEDOT structure. Advantages of this polymer relative to PEDOT are that it is dispersible in organic solvents, and it is non-corrosive. PEDOT-TMA was developed under a contract with the National Science Foundation, and it was first announced publicly on April 12, 2004. The trade name for PEDOT-TMA is Oligotron. PEDOT-TMA was featured in an article entitled "Next Stretch for Plastic Electronics" that appeared in Scientific American in 2004. The U.S. Patent office issued a patent protecting PEDOT-TMA on April 22, 2008.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

<span class="mw-page-title-main">Organic solar cell</span> Type of photovoltaic

An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells.

<span class="mw-page-title-main">Polyethylenimine</span> Chemical compound

Polyethylenimine (PEI) or polyaziridine is a polymer with repeating units composed of the amine group and two carbon aliphatic CH2CH2 spacers. Linear polyethyleneimines contain all secondary amines, in contrast to branched PEIs which contain primary, secondary and tertiary amino groups. Totally branched, dendrimeric forms were also reported. PEI is produced on an industrial scale and finds many applications usually derived from its polycationic character.

<span class="mw-page-title-main">Steven Van Slyke</span> American chemist (born 1956)

Steven Van Slyke is an American chemist, best known for his co-invention of the Organic Light Emitting Diode (OLED) and his contributions to the commercial development of OLED displays. Van Slyke is currently the Chief Technology Officer at Kateeva, Inc. Prior to joining Kateeva, he held various positions at Eastman Kodak and was involved in all aspects of OLED technology, from basic materials development to implementation of full-color OLED display manufacturing.

<span class="mw-page-title-main">Quantum dot display</span> Type of display device

A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut. Light travels through QD layer film and traditional RGB filters made from color pigments, or through QD filters with red/green QD color converters and blue passthrough. Although the QD color filter technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV active-matrix organic light-emitting diode (AMOLED) or QNED/MicroLED display panels. LED-backlit LCDs are the main application of photo-emissive quantum dots, though blue OLED panels with QD color filters are being researched.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

Mark E. Thompson is a Californian chemistry academic who has worked with OLEDs.

Daniel Antonio Tordera Salvador is a Spanish chemist, material scientist and writer. He is currently an Assistant Professor in the Physical Chemistry Department at the University of Valencia.

Optoelectronic reciprocity relations relate properties of a diode under illumination to the photon emission of the same diode under applied voltage. The relations are useful for interpretation of luminescence based measurements of solar cells and modules and for the analysis of recombination losses in solar cells.

Light-emitting diodes (LEDs) produce light by the recombination of electrons and electron holes in a semiconductor, a process called "electroluminescence". The wavelength of the light produced depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light. A LED is a long-lived light source, but certain mechanisms can cause slow loss of efficiency of the device or sudden failure. The wavelength of the light emitted is a function of the band gap of the semiconductor material used; materials such as gallium arsenide, and others, with various trace doping elements, are used to produce different colors of light. Another type of LED uses a quantum dot which can have its properties and wavelength adjusted by its size. Light-emitting diodes are widely used in indicator and display functions, and white LEDs are displacing other technologies for general illumination purposes.

References

  1. Gao, J.; Dane, J. (2003). "Planar Polymer Light-Emitting Electrochemical Cells with extremely Large Interelectrode Spacing". Applied Physics Letters. 83 (15): 3027. Bibcode:2003ApPhL..83.3027G. doi:10.1063/1.1618948.
  2. Shin, J.-H.; Dzwilewski, A.; Iwasiewicz, A.; Xiao, S.; Fransson, Å.; Ankah, G. N.; Edman, L. (2006). "Light Emission at 5 V from a Polymer Device with a Millimeter-Sized Interelectrode Gap". Applied Physics Letters. 89 (1): 013509. Bibcode:2006ApPhL..89a3509S. doi:10.1063/1.2219122.
  3. Matyba, P.; Yamaguchi, H.; Eda, G.; Chhowalla, M.; Edman, L.; Robinson, N. D. (2010). "Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices". ACS Nano. 4 (2): 637–42. CiteSeerX   10.1.1.474.2436 . doi:10.1021/nn9018569. PMID   20131906.
  4. Yu, Z.; Hu, L.; Liu, Z.; Sun, M.; Wang, M.; Grüner, G.; Pei, Q. (2009). "Fully Bendable Polymer Light Emitting Devices with Carbon Nanotubes as Cathode and Anode". Applied Physics Letters. 95 (20): 203304. Bibcode:2009ApPhL..95t3304Y. doi:10.1063/1.3266869.
  5. Mauthner, G.; Landfester, K.; Kock, A.; Bruckl, H.; Kast, M.; Stepper, C.; List, E. J. W. (2008). "Inkjet Printed Surface Cell Light-Emitting Devices from a Water-Based Polymer Dispersion". Organic Electronics. 9 (2): 164–70. doi:10.1016/j.orgel.2007.10.007.
  6. Gao, J.; Dane, J. (2004). "Visualization of Electrochemical Doping and Light-Emitting Junction Formation in Conjugated Polymer Films". Applied Physics Letters. 84 (15): 2778. Bibcode:2004ApPhL..84.2778G. doi: 10.1063/1.1702126 .
  7. Tang, Shi; Edman, Ludvig (2016-06-13). "Light-Emitting Electrochemical Cells: A Review on Recent Progress". Topics in Current Chemistry. 374 (4): 40. doi:10.1007/s41061-016-0040-4. ISSN   2365-0869. PMID   27573392. S2CID   5205115.
  8. Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. (1995). "Polymer Light-Emitting Electrochemical-Cells". Science. 269 (5227): 1086–8. Bibcode:1995Sci...269.1086P. doi:10.1126/science.269.5227.1086. PMID   17755530. S2CID   36807816.
  9. Filiatrault, H. L.; Porteous, G. C.; Carmichael, R. S.; Davidson, G. J. E.; Carmichael, T. B. (2012). "Stretchable Light-Emitting Electrochemical Cells Using an Elastomeric Emissive Material". Advanced Materials. 24 (20): 2673–8. doi:10.1002/adma.201200448. PMID   22451224. S2CID   13047158.
  10. Sandström, A.; Dam, H. F.; Krebs, F. C.; Edman, L. (2012). "Ambient Fabrication of Flexible and Large-Area Organic Light-Emitting Devices Using Slot-Die Coating". Nature Communications. 3: 1002. Bibcode:2012NatCo...3.1002S. doi:10.1038/ncomms2002. PMC   3432459 . PMID   22893126.
  11. Tang, S.; Sandström, A.; Lundberg P.; Lanz, T.; Larsen, C.; van Reenen, S.; Kemerink, M.; Edman, L. (30 October 2017). "Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency". Nature Communications. 8 (1190 (2017)): 1190. Bibcode:2017NatCo...8.1190T. doi:10.1038/s41467-017-01339-0. PMC   5662711 . PMID   29085078.