Telepresence is the appearance or sensation of a person being present at a place other than their true location, via telerobotics or video.
Telepresence requires that the users' senses interact with specific stimuli in order to provide the feeling of being in that other location. Additionally, users may be given the ability to affect the remote location. In this case, the user's position, movements, actions, voice, etc. may be sensed to transmit and duplicate in the remote location to bring about this effect. Therefore information may be traveling in both directions between the user and the remote location.
A popular application is found in telepresence videoconferencing, the highest possible level of videotelephony. Telepresence via video deploys greater technical sophistication and improved fidelity of both sight and sound than in traditional videoconferencing. Technical advancements in mobile collaboration have also extended the capabilities of videoconferencing beyond the boardroom for use with hand-held mobile devices, enabling collaboration independent of location.
A similar or identical concept is telexistence, which was first proposed by Susumu Tachi in Japan in 1980 [1] and 1981 [2] as patents and the first report was published in Japanese in 1982 [3] and in English in 1984. [4]
In a pioneering paper, the U.S. cognitive scientist Marvin Minsky attributed the development of the idea of telepresence to science fiction author Robert A. Heinlein: "My first vision of a remote-controlled economy came from Robert A. Heinlein's prophetic 1948 novel, Waldo," wrote Minsky. [5] In his science fiction short story "Waldo" (1942), Heinlein first proposed a primitive telepresence master-slave manipulator system.
The Brother Assassin, written by Fred Saberhagen in 1969, introduced the complete concept for a telepresence master-slave humanoid system. In the novel, the concept is described as follows: "And a moment later it seemed to all his senses that he had been transported from the master down into the body of the slave-unit standing beneath it on the floor. As the control of its movements passed over to him, the slave started gradually to lean to one side, and he moved its foot to maintain balance as naturally as he moved his own. Tilting back his head, he could look up through the slave's eyes to see the master-unit, with himself inside, maintaining the same attitude on its complex suspension."
The term telepresence, a neologism due to the futurist Patrick Gunkel, was introduced to the public in a 1980 article by Minsky, who outlined his vision for an adapted version of the older concept of teleoperation that focused on giving a remote participant a feeling of actually being present at a different location. [5] One of the first systems to create a fully immersive illusion of presence in a remote location was the Virtual Fixtures platform developed in 1992 at the U.S. Air Force's Armstrong Labs by inventor Louis Rosenberg. The system included stereoscopic image display from the remote environment as well as immersive touch feedback using a full upper-body exoskeleton. [6] [7] [8]
The first commercially successful telepresence company, Teleport (which was later renamed TeleSuite), was founded in 1993 by David Allen and Herold Williams. [9] Before TeleSuite, they ran a resort business from which the original concept emerged because they often found businesspeople would have to cut their stays short to participate in important meetings. Their idea was to develop a technology that would allow businesspeople to attend their meetings without leaving the resorts so that they could lengthen their hotel stays.
Hilton Hotels had originally licensed to install them in their hotels throughout the United States and other countries, but use was low. The idea lost momentum, with Hilton eventually backing out. TeleSuite later began to focus less on the hospitality industry and more on business-oriented telepresence systems. Shareholders eventually held enough stock to replace the company's original leadership, which ultimately led to its collapse.[ citation needed ] David Allen purchased all of the assets of TeleSuite and appointed Scott Allen as president [10] of the new company called Destiny Conferencing.
Destiny Conferencing licensed its patent portfolio to HP which became the first large company to join the telepresence industry, soon followed by others such as Cisco and Polycom (now called Poly). [11] After forming a distribution agreement with Pleasanton-based Polycom (now Poly), Destiny Conferencing sold on January 5, 2007, to Polycom (now Poly) for $60 million.
A telepresence research project has started in 1990. Located at the University of Toronto, the Ontario Telepresence Project (OTP) was an interdisciplinary effort involving social sciences and engineering. Its final report stated that it "...was a three year, $4.8 million pre-competitive research project whose mandate was to design and field trial advanced media space systems in a variety of workplaces in order to gain insights into key sociological and engineering issues. The OTP, which has ended in December 1994, was part of the International Telepresence Project which linked Ontario researchers to their counterparts in four European nations. The Project's major sponsor was the Government of Ontario, through two of its Centres of Excellence—the Information Technology Research Centre (ITRC) and the Telecommunications Research Institute of Ontario (TRIO)." [12]
An industry expert described some benefits of telepresence: "There were four drivers for our decision to do more business over video and telepresence. We wanted to reduce our travel spend, reduce our carbon footprint and environmental impact, improve our employees' work/life balance, and improve employee productivity.". [13]
Rather than traveling great distances in order to have a face-face meeting, it is now commonplace to use a telepresence system instead, which uses a multiple codec video system (which is what the word "telepresence" most currently represents). Each member/party of the meeting uses a telepresence room to "dial in" and can see/talk to every other member on a screen/screens as if they were in the same room. This brings enormous time and cost benefits. It is also superior to phone conferencing (except in cost), as the visual aspect greatly enhances communications, allowing for perceptions of facial expressions and other body languages.
Mobile collaboration systems combine the use of video, audio and on-screen drawing capabilities using newest generation hand-held mobile devices to enable multi-party conferencing in real-time, independent of location. Benefits include cost-efficiencies resulting from accelerated problem resolution, reductions in downtimes and travel, improvements in customer service and increased productivity. [14]
Telepresence has been described as the human experience of being fully present at a live real-world location remote from one's own physical location. Someone experiencing video telepresence would therefore be able to behave and receive stimuli as if part of a meeting at the remote site. The aforementioned would result in interactive participation of group activities that would bring benefits to a wide range of users. [15]
To provide a telepresence experience, technologies are required that implement the human sensory elements of vision, sound, and manipulation.
A minimum system usually includes visual feedback. Ideally, the entire field of view of the user is filled with a view of the remote location, and the viewpoint corresponds to the movement and orientation of the user's head. In this way, it differs from television or cinema, where the viewpoint is out of the control of the viewer.
In order to achieve this, the user may be provided with either a very large (or wraparound) screen, or small displays mounted directly in front of the eyes. The latter provides a particularly convincing 3D sensation. The movements of the user's head must be sensed, and the camera must mimic those movements accurately and in real time. This is important to prevent unintended motion sickness.
Another source of future improvement to telepresence displays, compared by some to holograms, is a projected display technology featuring life-sized imagery. [16]
Sound is generally the easiest sensation to implement with high fidelity, based on the foundational telephone technology dating back more than 130 years. Very high-fidelity sound equipment has also been available for a considerable period of time, with stereophonic sound being more convincing than monaural sound.
The ability to manipulate a remote object or environment is an important aspect for some telepresence users and can be implemented in a large number of ways depending on the needs of the user. Typically, the movements of the user's hands (position in space and posture of the fingers) are sensed by wired gloves, inertial sensors, or absolute spatial position sensors. A robot in the remote location then copies those movements as closely as possible. This ability is also known as teleoperation.
The more closely the robot re-creates the form factor of the human hand, the greater the sense of telepresence. The complexity of robotic effectors varies greatly, from simple one axis grippers, to fully anthropomorphic robot hands.
Haptic teleoperation refers to a system that provides some sort of tactile force feedback to the user, so the user feels some approximation of the weight, firmness, size, and/or texture of the remote objects manipulated by the robot. A new form of technology, called collaborative telepresence, is currently being developed which will eventually be used to collaborate with others while seeming like you are in the same room as the other person, keeping a normal social distance. Collaborative telepresence uses haptic sensors like these to allow a sense of touch.
The prevalence of high quality video conferencing using mobile devices, tablets and portable computers has enabled considerable growth in telepresence robots to help give a better sense of remote physical presence for communication and collaboration in the office, home or school when one cannot be there in person. The robot avatar can move or look around at the command of the remote person. Drivable telepresence robots – typically contain a display (integrated or separate phone or tablet) mounted on a roaming base. Some examples of roaming telepresence robots include Beam by Suitable Technologies, Double by Double Robotics, Ava Telepresence by Ava Robotics, Anybots, Vgo, TeleMe by Mantarobot, and Romo by Romotive. [17]
More modern roaming telepresence robots may include an ability to operate autonomously. The robots can map out the space and be able to avoid obstacles while driving themselves between rooms and their docking stations. [18]
Telepresence's effectiveness varies by degree of fidelity. Research has noted that telepresence solutions differ in degree of implementation, from "immersive" through "adaptive" to "lite" solutions. [19] At the top are immersive solutions where the environments at both ends are highly controlled (and often the same) with respect to lighting, acoustics, decor and furniture, thereby giving all the participants the impression they are together at the same table in the same room, thus engendering the "immersive" label.
Adaptive telepresence solutions may use the same technology, but the environments at both ends are not highly controlled and hence often differ. Adaptive solutions differ from telepresence lite solutions not in terms of control of environments, but in terms of integration of technology. Adaptive solutions use a managed service, whereas telepresence lite solutions use components that someone must integrate.
A good telepresence strategy puts the human factors first, focusing on visual collaboration configurations that closely replicate the brain's innate preferences for interpersonal communications, separating from the unnatural "talking heads" experience of traditional videoconferencing. These cues include life–size participants, fluid motion, accurate flesh tones and the appearance of true eye contact. [20] This is already a well-established technology, used by many businesses today. The chief executive officer of Cisco Systems, John Chambers in June 2006 at the Networkers Conference compared telepresence to teleporting from Star Trek , and said that he saw the technology as a potential billion dollar market for Cisco. [21]
Rarely will a telepresence system provide such a transparent implementation with such comprehensive and convincing stimuli that the user perceives no differences from actual presence. But the user may set aside such differences, depending on the application.
The fairly simple telephone achieves a limited form of telepresence using just the human sensory element of hearing, in that users consider themselves to be talking to each other rather than talking to the telephone itself.
Watching television, for example, although it stimulates our primary senses of vision and hearing, rarely gives the impression that the watcher is no longer at home. However, television sometimes engages the senses sufficiently to trigger emotional responses from viewers somewhat like those experienced by people who directly witness or experience events. Televised depictions of sports events as an example can elicit strong emotions from viewers.
As the screen size increases, so does the sense of immersion, as well as the range of subjective mental experiences available to viewers. Some viewers have reported a sensation of genuine vertigo or motion sickness while watching IMAX movies of flying or outdoor sequences.
Because most currently feasible telepresence gear leaves something to be desired; the user must suspend disbelief to some degree, and choose to act in a natural way, appropriate to the remote location, perhaps using some skill to operate the equipment. In contrast, a telephone user does not see herself as "operating" the telephone but merely talking to another person with it.
Telepresence refers to a user interacting with another live, real place, and is distinct from virtual presence , where the user is given the impression of being in a simulated environment. Telepresence and virtual presence rely on similar user-interface equipment, and they share the common feature that the relevant portions of the user's experience at some point in the process will be transmitted in an abstract (usually digital) representation. The main functional difference is the entity on the other end: a real environment in the case of telepresence, vs. a computer in the case of immersive virtual reality.
Presence is very similar to distal attribution or externalization which is like projecting one's presence and mind beyond the limits of our sensory organs and perceiving the environment in such a way. A distinction is made between two separate perceptions. The first being the unmediated perceptions in which we are unable to feel anything beyond our physical surroundings. The second being the mediated presence through technology which forces us to suddenly perceive two different environments at the same time: The one immediately around us and the one projected for us through technology. Mediated experiences are not limited to virtual technology and can also be experienced with spatially distant places such as space with a telescope or a camera. [22]
Application examples could be cited within emergency management and security services, B&I, and the entertainment and education industries. [15]
Telepresence can be used to establish a sense of shared presence or shared space among geographically separated members of a group.[ citation needed ]
Many other applications in situations where humans are exposed to hazardous situations are readily recognised as suitable candidates for telepresence. Mining, bomb disposal, military operations, rescue of victims from fire, toxic atmospheres, deep sea exploration, or even hostage situations, are some examples. Telepresence also plays a critical role in the exploration of other worlds, such as with the Mars Exploration Rovers, which are teleoperated from Earth.
Small diameter pipes otherwise inaccessible for the examination can now be viewed using pipeline video inspection.
The possibility of being able to project the knowledge and the physical skill of a surgeon over long distances has many attractions. Thus, again there is considerable research underway in the subject. (Locally controlled robots are currently being used for joint replacement surgery as they are more precise in milling bone to receive the joints.) The armed forces have an obvious interest since the combination of telepresence, teleoperation, and telerobotics can potentially save the lives of battle casualties by allowing them prompt attention in mobile operating theatres by remote surgeons.
Recently, teleconferencing has been used in medicine (telemedicine or telematics), mainly employing audio-visual exchange, for the performance of real time remote surgical operations – as demonstrated in Regensburg, Germany in 2002. [23] In addition to audio-visual data, the transfer of haptic (tactile) information has also been demonstrated in telemedicine. [24]
Research has been conducted on the use of telepresence to provide professional development to teachers. Research has shown that one of the most effective forms of teacher professional development is coaching, or cognitive apprenticeship. The application of telepresence shows promise for making this approach to teacher professional development practical. [25]
The benefits of enabling schoolchildren to take an active part in exploration have also been shown by the JASON and the NASA Ames Research Center programs. The ability of a pupil, student, or researcher to explore an otherwise inaccessible location is a very attractive proposition; For example, locations where the passage of too many people is harming the immediate environment or the artifacts themselves, e.g. undersea exploration of coral reefs, ancient Egyptian tombs, and more recent works of art.
Another application is for the remote classroom which allows a professor to teach students in different campuses at the same time. An example of this application is in classrooms of the law schools of Rutgers University. Two identical rooms are located in two metropolitan areas. Each classroom is equipped with studio lighting, audio, and video conference equipment connected to a 200-inch monitor on the wall that students face to give an impression that they are all in the same classroom. This allows professors to be on either campus and facilitates the interaction among students in both campuses during the classes. [26]
True telepresence is a multidisciplinary art and science that foundationally integrates engineering, psychology, and the art of television broadcast.
In 1998, Diller and Scofidio created the "Refresh", an Internet-based art installation that juxtaposed a live web camera with recorded videos staged by professional actors. Each image was accompanied with a fictional narrative which made it difficult to distinguish which was the live web camera.
In 1993, Eduardo Kac and Ed Bennett created a telepresence installation "Ornitorrinco on the Moon", for the international telecommunication arts festival "Blurred Boundaries" (Entgrenzte Grenzen II). It was coordinated by Kulturdata, in Graz, Austria, and was connected around the world.
From 1997 to the present Ghislaine Boddington of shinkansen and body>data>space has explored, in a collaboration process she has called The Weave [27] using performing arts techniques, the extended use of telepresence into festivals, arts centres and clubs and has directed numerous workshops leading to exploration of telepresence by many artists worldwide. This methodology has been used extensively to develop skills in tele-intuition for young people in preparation for the future world of work through the body>data>space / NESTA project "Robots and Avatars" an innovative project explores how young people will work and play with new representational forms of themselves and others in virtual and physical life in the next 10–15 years.
An overview of telepresence in dance and theatre through the last 20 years is given in «Excited Atoms» [28] research document by Judith Staines (2009) which one can download from the On The Move website.
Telepresence is represented in media and entertainment.
Haptic technology is technology that can create an experience of touch by applying forces, vibrations, or motions to the user. These technologies can be used to create virtual objects in a computer simulation, to control virtual objects, and to enhance remote control of machines and devices (telerobotics). Haptic devices may incorporate tactile sensors that measure forces exerted by the user on the interface. The word haptic, from the Greek: ἁπτικός (haptikos), means "tactile, pertaining to the sense of touch". Simple haptic devices are common in the form of game controllers, joysticks, and steering wheels.
Telerobotics is the area of robotics concerned with the control of semi-autonomous robots from a distance, chiefly using television, wireless networks or tethered connections. It is a combination of two major subfields, which are teleoperation and telepresence.
Remote surgery is the ability for a doctor to perform surgery on a patient even though they are not physically in the same location. It is a form of telepresence. A robot surgical system generally consists of one or more arms, a master controller (console), and a sensory system giving feedback to the user. Remote surgery combines elements of robotics, telecommunications such as high-speed data connections and elements of management information systems. While the field of robotic surgery is fairly well established, most of these robots are controlled by surgeons at the location of the surgery. Remote surgery is remote work for surgeons, where the physical distance between the surgeon and the patient is less relevant. It promises to allow the expertise of specialized surgeons to be available to patients worldwide, without the need for patients to travel beyond their local hospital.
Mixed reality (MR) is a term used to describe the merging of a real-world environment and a computer-generated one. Physical and virtual objects may co-exist in mixed reality environments and interact in real time.
Scott Fisher is the Professor and Founding Chair of the Interactive Media Division in the USC School of Cinematic Arts at the University of Southern California, and Director of the Mobile and Environmental Media Lab there. He is an artist and technologist who has worked extensively on virtual reality, including pioneering work at NASA, Atari Research Labs, MIT's Architecture Machine Group and Keio University.
Teleoperation indicates operation of a system or machine at a distance. It is similar in meaning to the phrase "remote control" but is usually encountered in research, academia and technology. It is most commonly associated with robotics and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a person from a distance.
Videotelephony is the use of audio and video for simultaneous two-way communication. Today, videotelephony is widespread. There are many terms to refer to videotelephony. Videophones are standalone devices for video calling. In the present day, devices like smartphones and computers are capable of video calling, reducing the demand for separate videophones. Videoconferencing implies group communication. Videoconferencing is used in telepresence, whose goal is to create the illusion that remote participants are in the same room.
Kenneth Yigael Goldberg is an American artist, writer, inventor, and researcher in the field of robotics and automation. He is professor and chair of the industrial engineering and operations research department at the University of California, Berkeley, and holds the William S. Floyd Jr. Distinguished Chair in Engineering at Berkeley, with joint appointments in Electrical Engineering and Computer Sciences (EECS), Art Practice, and the School of Information. Goldberg also holds an appointment in the Department of Radiation Oncology at the University of California, San Francisco.
Raymond C. Goertz was an American mechanical engineer and an early pioneer in the field of robotics, specifically remote-controlled robots. In 1949, while working for the Atomic Energy Commission at Argonne National Laboratory, Goertz filed a patent for an early master-slave manipulator in order to handle radioactive material. Goertz recognized the value of electrically coupling manipulators and laid the foundations of modern tele-robotics and bilateral force-reflecting positional servomechanisms.
Poly Inc., formerly Polycom, is an American multinational corporation that develops video, voice and content collaboration and communication technology. Poly is a subsidiary of HP Inc.
Eric Paulos is an American computer scientist, artist, and inventor, best known for his early work on internet robotic teleoperation and is considered a founder of the field of Urban Computing, coining the term "urban computing" in 2004. His current work is in the areas of emancipation fabrication, cosmetic computing, citizen science, New Making Renaissance, Critical Making, Robotics, DIY Biology, DIY culture, Micro-volunteering, and the cultural critique of such technologies through New Media strategies.
A virtual fixture is an overlay of augmented sensory information upon a user's perception of a real environment in order to improve human performance in both direct and remotely manipulated tasks. Developed in the early 1990s by Louis Rosenberg at the U.S. Air Force Research Laboratory (AFRL), Virtual Fixtures was a pioneering platform in virtual reality and augmented reality technologies.
In virtual reality (VR), immersion is the perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR system in images, sound or other stimuli that provide an engrossing total environment.
Cisco TelePresence, first introduced in October 2006, is a range of products developed by Cisco Systems designed to link two physically separated rooms so they resemble a single conference room, regardless of location.
Presence is a theoretical concept describing the extent to which media represent the world. Presence is further described by Matthew Lombard and Theresa Ditton as “an illusion that a mediated experience is not mediated." Today, it often considers the effect that people experience when they interact with a computer-mediated or computer-generated environment. The conceptualization of presence borrows from multiple fields including communication, computer science, psychology, science, engineering, philosophy, and the arts. The concept of presence accounts for a variety of computer applications and Web-based entertainment today that are developed on the fundamentals of the phenomenon, in order to give people the sense of, as Sheridan called it, “being there."
Anybots Inc. is an American robotics company based in Santa Clara, California. It was founded in 2001 by Trevor Blackwell.
Lifesize is a video and audio telecommunications company in the United States which provides high definition videoconferencing endpoints and accessories, touchscreen conference room phones, a cloud-based video collaboration platform, and omnichannel contact center solutions under their CxEngage product line. Lifesize's headquarters is located in Austin, Texas. Its Europe, Middle East and Africa regional office is located in Munich, Germany.
Affective haptics is an area of research which focuses on the study and design of devices and systems that can elicit, enhance, or influence the emotional state of a human by means of sense of touch. The research field is originated with the Dzmitry Tsetserukou and Alena Neviarouskaya papers on affective haptics and real-time communication system with rich emotional and haptic channels. Driven by the motivation to enhance social interactivity and emotionally immersive experience of users of real-time messaging, virtual, augmented realities, the idea of reinforcing (intensifying) own feelings and reproducing (simulating) the emotions felt by the partner was proposed. Four basic haptic (tactile) channels governing our emotions can be distinguished:
Adaptive collaborative control is the decision-making approach used in hybrid models consisting of finite-state machines with functional models as subcomponents to simulate behavior of systems formed through the partnerships of multiple agents for the execution of tasks and the development of work products. The term “collaborative control” originated from work developed in the late 1990s and early 2000 by Fong, Thorpe, and Baur (1999). It is important to note that according to Fong et al. in order for robots to function in collaborative control, they must be self-reliant, aware, and adaptive. In literature, the adjective “adaptive” is not always shown but is noted in the official sense as it is an important element of collaborative control. The adaptation of traditional applications of control theory in teleoperations sought initially to reduce the sovereignty of “humans as controllers/robots as tools” and had humans and robots working as peers, collaborating to perform tasks and to achieve common goals. Early implementations of adaptive collaborative control centered on vehicle teleoperation. Recent uses of adaptive collaborative control cover training, analysis, and engineering applications in teleoperations between humans and multiple robots, multiple robots collaborating among themselves, unmanned vehicle control, and fault tolerant controller design.