Teleportation

Last updated

Teleportation is a fictional transfer of matter or energy from one point to another without traversing the physical space between them. It is a common subject in science fiction literature and in other popular culture. Teleportation is often paired with time travel, being that the travelling between the two points takes an unknown period of time, sometimes being immediate. An apport is a similar phenomenon featured in parapsychology and spiritualism. [1] [2]

Contents

There is no known physical mechanism that would allow for teleportation. [3] Frequently appearing scientific papers and media articles with the term teleportation typically report on so-called "quantum teleportation", a scheme for information transfer which, due to the no-communication theorem, still would not allow for faster-than-light communication. [4]

Etymology

The use of the term teleport to describe the hypothetical movement of material objects between one place and another without physically traversing the distance between them has been documented as early as 1878. [5] [6]

American writer Charles Fort is credited with having coined the word teleportation in 1931 [7] [8] to describe the strange disappearances and appearances of anomalies, which he suggested may be connected. As in the earlier usage, he joined the Greek prefix tele- (meaning "remote") to the root of the Latin verb portare (meaning "to carry"). [9] Fort's first formal use of the word occurred in the second chapter of his 1931 book Lo! : [10]

Mostly in this book I shall specialize upon indications that there exists a transportory force that I shall call Teleportation. I shall be accused of having assembled lies, yarns, hoaxes, and superstitions. To some degree I think so, myself. To some degree, I do not. I offer the data.

Cultural references

Fiction

Teleportation is a common subject in science fiction literature, film, video games, and television. The use of matter transmitters in science fiction originated at least as early as the 19th century. [11] An early example of scientific teleportation (as opposed to magical or spiritual teleportation) is found in the 1897 novel To Venus in Five Seconds by Fred T. Jane. Jane's protagonist is transported from a strange-machinery-containing gazebo on Earth to planet Venus – hence the title.

The earliest recorded story of a "matter transmitter" was Edward Page Mitchell's "The Man Without a Body" in 1877. [12]

Quantum teleportation

Quantum teleportation is distinct from regular teleportation, as it does not transfer matter from one place to another, but rather transmits the information necessary to prepare a (microscopic) target system in the same quantum state as the source system. The scheme was named quantum "teleportation", because certain properties of the source system are recreated in the target system without any apparent quantum information carrier propagating between the two.

In many cases, such as normal matter at room temperature, the exact quantum state of a system is irrelevant for any practical purpose (because it fluctuates rapidly anyway, it "decoheres"), and the necessary information to recreate the system is classical. In those cases, quantum teleportation may be replaced by the simple transmission of classical information, such as radio communication.

In 1993, Bennett et al [13] proposed that a quantum state of a particle could be transferred to another distant particle, without moving the two particles at all. This is called quantum state teleportation. There are many following theoretical and experimental papers published. [14] [15] [16] Researchers believe that quantum teleportation is the foundation of quantum calculation and quantum communication.[ citation needed ]

In 2008, M. Hotta [17] proposed that it may be possible to teleport energy by exploiting quantum energy fluctuations of an entangled vacuum state of a quantum field. There are some papers published but no experimental verification.[ citation needed ]

In 2014, researcher Ronald Hanson and colleagues from the Technical University Delft in the Netherlands, demonstrated the teleportation of information between two entangled quantumbits three metres apart. [18]

In 2016, Y. Wei showed that in a generalization of quantum mechanics, particles themselves could teleport from one place to another. [19] This is called particle teleportation. With this concept, superconductivity can be viewed as the teleportation of some electrons in the superconductor and superfluidity as the teleportation of some of the atoms in the cellular tube. This effect is not predicted to occur in standard quantum mechanics.

Philosophy

Philosopher Derek Parfit used teleportation in his teletransportation paradox. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Einstein–Podolsky–Rosen paradox</span> Historical critique of quantum mechanics

The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a duet of particles are generated, interact, or share spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

This is a timeline of quantum computing.

Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.

In physics, thermalisation is the process of physical bodies reaching thermal equilibrium through mutual interaction. In general the natural tendency of a system is towards a state of equipartition of energy and uniform temperature that maximizes the system's entropy. Thermalisation, thermal equilibrium, and temperature are therefore important fundamental concepts within statistical physics, statistical mechanics, and thermodynamics; all of which are a basis for many other specific fields of scientific understanding and engineering application.

Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.

William "Bill" Kent Wootters is an American theoretical physicist, and one of the founders of the field of quantum information theory. In a 1982 joint paper with Wojciech H. Zurek, Wootters proved the no cloning theorem, at the same time as Dennis Dieks, and independently of James L. Park who had formulated the no-cloning theorem in 1970. He is known for his contributions to the theory of quantum entanglement including quantitative measures of it, entanglement-assisted communication and entanglement distillation. The term qubit, denoting the basic unit of quantum information, originated in a conversation between Wootters and Benjamin Schumacher in 1992.

In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position, presence, or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment, the Elitzur–Vaidman bomb-testing problem, and certain double-cavity optical systems, such as Hardy's paradox.

The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.

Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

Quantum illumination is a paradigm for target detection that employs quantum entanglement between a signal electromagnetic mode and an idler electromagnetic mode, as well as joint measurement of these modes. The signal mode is propagated toward a region of space, and it is either lost or reflected, depending on whether a target is absent or present, respectively. In principle, quantum illumination can be beneficial even if the original entanglement is completely destroyed by a lossy and noisy environment.

<span class="mw-page-title-main">Sandu Popescu</span> British physicist

Sandu Popescu is a Romanian-British physicist working in the foundations of quantum mechanics and quantum information.

Continuous-variable (CV) quantum information is the area of quantum information science that makes use of physical observables, like the strength of an electromagnetic field, whose numerical values belong to continuous intervals. One primary application is quantum computing. In a sense, continuous-variable quantum computation is "analog", while quantum computation using qubits is "digital." In more technical terms, the former makes use of Hilbert spaces that are infinite-dimensional, while the Hilbert spaces for systems comprising collections of qubits are finite-dimensional. One motivation for studying continuous-variable quantum computation is to understand what resources are necessary to make quantum computers more powerful than classical ones.

Quantum energy teleportation is a quantum protocol proposed by Masahiro Hotta in 2008 allowing one party to put energy into the quantum vacuum, then send information to another party that lets them extract the energy from the vacuum.

References

  1. "Historical Terms Glossary". Archived from the original on 14 March 2016. Retrieved 29 December 2016.
  2. Melton, J. Gordon (2008). The Encyclopedia of Religious Phenomena . Detroit: Visible Ink Press. pp.  12–13. ISBN   9781578592098.
  3. "Is Teleportation Possible?". Slate. 23 May 2013. Retrieved 20 December 2022.
  4. "Quantum teleportation is real, but it's not what you think". Popular Science. 19 February 2019. Retrieved 20 December 2022.
  5. "The Hawaiian gazette. (Honolulu [Oahu, Hawaii]) 1865–1918, October 23, 1878, Image 4". loc.gov.
  6. "29 Jun 1878 – The Latest Wonder". nla.gov.au. 29 June 1878.
  7. "Lo!: Part I: 2". Sacred-texts.com. Retrieved 20 March 2014.
  8. "less well-known is the fact that Charles Fort coined the word in 1931" in Rickard, B. and Michell, J. Unexplained Phenomena: a Rough Guide special (Rough Guides, 2000 ( ISBN   1-85828-589-5), p. 3)
  9. "Teleportation". Etymology online. Retrieved 7 October 2016.
  10. Mr. X. "Lo!: A Hypertext Edition of Charles Hoy Fort's Book". Resologist.net. Retrieved 20 March 2014.
  11. Matter Transmission in John Clute and, Peter Nichols (ed), The Encyclopedia of Science Fiction, Orbit, 1999 ISBN   1 85723 897 4
  12. "Teleportation in early science fiction". The Worlds of David Darling. Retrieved 4 February 2014.
  13. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters (1993), Teleporting an Unknown Quantum State via Dual Classical and Einstein–Podolsky–Rosen Channels, Phys. Rev. Lett. 70, 1895–1899.
  14. Bouwmeester, D.; et al. (1997). "Experimental quantum teleportation". Nature. 390 (6660): 575–579. arXiv: 1901.11004 . Bibcode:1997Natur.390..575B. doi:10.1038/37539. S2CID   4422887.
  15. Werner, Reinhard F. (2001). "All teleportation and dense coding schemes". J. Phys. A: Math. Gen. 34 (35): 7081–7094. arXiv: quant-ph/0003070 . Bibcode:2001JPhA...34.7081W. doi:10.1088/0305-4470/34/35/332. S2CID   9684671.
  16. Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng (2017). "Ground-to-satellite quantum teleportation". Nature. 549 (7670): 70–73. arXiv: 1707.00934 . Bibcode:2017Natur.549...70R. doi:10.1038/nature23675. PMID   28825708. S2CID   4468803.
  17. Hotta, Masahiro. "A PROTOCOL FOR QUANTUM ENERGY DISTRIBUTION". Phys. Lett. A 372 5671 (2008).
  18. "Hansonlab demonstrates quantum teleportation".
  19. Wei, Yuchuan (29 June 2016). "Comment on "Fractional quantum mechanics" and "Fractional Schrödinger equation"". Physical Review E. 93 (6): 066103. arXiv: 1607.01356 . Bibcode:2016PhRvE..93f6103W. doi:10.1103/PhysRevE.93.066103. PMID   27415397. S2CID   20010251.
  20. Peg Tittle,What If...: Collected Thought Experiments in Philosophy, Routledge, 2016, ISBN   1315509326, pp. 88–89

Further reading