Virtual reality sickness (VR sickness) occurs when exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms. [1] The most common symptoms are general discomfort, eye strain, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy. [2] Other symptoms include postural instability and retching. [2] Common causes are low frame rate, input lag, and the vergence-accommodation-conflict. [3] [4]
Virtual reality sickness is different from motion sickness in that it can be caused by the visually-induced perception of self-motion; real self-motion is not needed. [1] It is also different from simulator sickness; non-virtual reality simulator sickness tends to be characterized by oculomotor disturbances, whereas virtual reality sickness tends to be characterized by disorientation. [5] [6]
Virtual reality sickness may have undesirable consequences beyond the sickness itself. For example, Crowley (1987) argued that flight simulator sickness could discourage pilots from using flight simulators, reduce the efficiency of training through distraction and the encouragement of adaptive behaviors that are unfavorable for performance, compromise ground safety or flight safety when sick and disoriented pilots leave the simulator. [7] Similar consequences could be expected for virtual reality systems. Although the evidence for performance decrements due to virtual reality sickness is limited, [8] research does suggest that virtual reality sickness is a major barrier to using virtual reality, [9] indicating that virtual reality sickness may be a barrier to the effective use of training tools and rehabilitation tools in virtual reality. Estimates of the multi-study incidence and main symptoms of virtual reality sickness (also called cybersickness) have been made. [10]
Virtual reality sickness is closely related to simulator and motion sickness. Sensory conflict theory provides a framework for understanding motion sickness; however, it can be applied to virtual reality sickness to better understand how it can occur, [11] and is commonly used for that purpose. [2] Sensory conflict theory posits that sickness will occur when a user's perception of self-motion is based on incongruent sensory inputs from the visual system, vestibular system, and non-vestibular proprioceptors, and particularly so when these inputs are at odds with the user's expectation based on prior experience. [12] Applying this theory to virtual reality, sickness can be minimized when the sensory inputs inducing self-motion are in agreement with one another.[ citation needed ]
A major trigger of virtual reality sickness is when there is disparity in apparent motion between the visual and vestibular stimuli. This disparity occurs if there is a disagreement between what the stimuli from the eyes and inner ear are sending to the brain. This is a fundamental cause of both simulator and motion sickness as well. In virtual reality, the eyes transmit that the person is running and jumping through a dimension, however, the ears transmit that no movement is occurring and that the body is sitting still. Since there is this discord between the eyes and the ears, a form of motion sickness can occur.
The images projected from typical virtual reality headsets have a major impact on sickness. The refresh rate of on-screen images is often not high enough when VR sickness occurs. [13] Because the refresh rate is slower than what the brain processes, it causes a disconnect between the processing rate and the refresh rate, which causes the user to perceive glitches on the screen. When these two components do not match up, it can cause the user to experience the same feelings as simulator and motion sickness which is mentioned below.
The resolution on animation can also cause users to experience this phenomenon. When animations are poor, it causes another type of discord between what is expected and what is actually happening on the screen. When onscreen graphics do not keep the pace with the users' head movements, it can trigger a form of motion sickness.
Not all scientists agree with sensory conflict theory. [2] A second theory of motion sickness, which has also been used to explain virtual reality sickness, is the theory of postural instability. [14] This theory holds that motion sickness and related sicknesses occur because of poor postural adaptations in response to unusual coupling between visual stimuli and motor coordination. Characteristic markers of postural instability occur prior to appearance of symptoms and predict the later development of symptoms. [15] This theory can explain some otherwise surprising situations in which motion sickness did not occur in the presence of sensory conflict. [16]
There are various technical aspects of virtual reality that can induce sickness, [13] such as mismatched motion, [17] field of view, [18] motion parallax, [19] and viewing angle. [20] Additionally, the amount of time spent in virtual reality can increase the presence of symptoms. [21] [20] Mismatched motion can be defined as a discrepancy between the motion of the simulation and the motion that the user expects. [17] It is possible to induce motion sickness in virtual reality when the frequencies of mismatched motion are similar to those for motion sickness in reality, such as seasickness. [17] These frequencies can be experimentally manipulated, but also have the propensity to arise from system errors. Generally, increasing the field of view increases incidence of simulator sickness symptoms. This relationship has been shown to be curvilinear, with symptoms approaching an asymptote for fields of view above 140°. [18] Altering motion parallax distances to those less than the distance between the human eyes in large multiple-screen simulation setups can induce oculomotor distress, such as headaches, eyestrain, and blurred vision. [19] There are fewer reports of oculomotor distress on smaller screens; however, most simulation setups with motion parallax effects can still induce eyestrain, fatigue, and general discomfort over time.[ citation needed ] Viewing angle has been shown to increase a user's sickness symptoms, especially at extreme angles. [20] One example of such an extreme angle would be when a user must look downwards a short distance in front of their virtual feet. As opposed to a forward viewing angle, an extreme downward angle such as this has been shown to markedly increase sickness in virtual environments. [20] Time spent immersed in a virtual environment contributes to sickness symptom presence due to the increasing effects of fatigue on the user. [20] Oculomotor symptoms are the most common to occur due to immersion time, but the nature of the user's movements (e.g., whole-body vs. head-only) is suggested to be the primary cause of nausea or physical sickness. [20]
According to several studies, introducing a static frame of reference (independent visual background) may reduce simulation sickness. [22] [23] [24] A technique called Nasum Virtualis shows a virtual nose as a fixed frame of reference for VR headsets. [25] [26]
Other techniques for reducing nausea involve simulating ways of displacement that don't create or reduce discrepancies between the visual aspects and body movement, such as room-scale VR, reducing rotational motions during navigation, [27] dynamically reducing the field of view, [28] teleportation, [29] and movement in zero gravity. [30]
In January 2020, the French start-up Boarding Ring, known for their glasses against motion sickness, [31] released an add-on device against virtual reality sickness. [32] Using two small screens in the user's peripheral field of view, the device displays visual information consistent with vestibular inputs, avoiding the sensory conflict.
Galvanic vestibular stimulation, which creates the illusion of motion by electric stimulation of the vestibular system, is another technique being explored for its potential to mitigate or eliminate the visual-vestibular mismatch. [33]
To alleviate these symptoms, methods such as gradual adaptation to VR, the use of natural remedies like ginger, and wearing acupressure bracelets are effective. Choosing VR games designed to minimize motion sickness can also reduce nausea and improve the user experience. [34]
With the integration of virtual reality into the more commercial mainstream, issues have begun to arise in relation to VR sickness in head-mounted gaming devices. [35] While research on head-mounted VR for gaming dates back to the early 1990s, [36] the potential for mass usability has only become recently realized. Contemporary VR headsets appear to induce minimal to none VR sickness. [13]
While certain features are known to moderate VR sickness in head-mounted displays, such as playing from a seated position rather than standing, [36] it has also been found that this merely puts off the onset of sickness, rather than completely preventing it. This inherently presents an issue, in that this type of interactive VR often involves standing or walking for a fully immersive experience. [35] Gaming VR specialists argue that this unique brand of VR sickness is only a minor issue, claiming that it disappears with time spent (multiple days) using the head-mounted displays, relating it to "getting your sea legs". [37] However, getting users interested in sickness for multiple days with the promise of "probably getting over it" is a struggle for developers of head-mounted gaming tech. Surveys have shown that a large percentage of people won't develop their "VR legs," in particular women. [38] These same developers also argue that it has more to do with the individual game being played, and that certain gaming aspects are more likely to create issues, such as change in speed, walking up stairs, and jumping, [37] which are all, unfortunately, fairly normal game functions in predominant genres.
Individuals vary widely in their susceptibility to simulator and virtual reality sickness. [2] Some of the factors in virtual reality sickness are listed below: [2]
Virtual reality (VR) is a simulated experience that employs 3D near-eye displays and pose tracking to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment, education and business. VR is one of the key technologies in the reality-virtuality continuum. As such, it is different from other digital visualization solutions, such as augmented virtuality and augmented reality.
Motion sickness occurs due to a difference between actual and expected motion. Symptoms commonly include nausea, vomiting, cold sweat, headache, dizziness, tiredness, loss of appetite, and increased salivation. Complications may rarely include dehydration, electrolyte problems, or a lower esophageal tear.
Acrophobia, also known as hypsophobia, is an extreme or irrational fear or phobia of heights, especially when one is not particularly high up. It belongs to a category of specific phobias, called space and motion discomfort, that share similar causes and options for treatment.
The vestibular system, in vertebrates, is a sensory system that creates the sense of balance and spatial orientation for the purpose of coordinating movement with balance. Together with the cochlea, a part of the auditory system, it constitutes the labyrinth of the inner ear in most mammals.
Space adaptation syndrome (SAS) or space sickness is a condition experienced by as many as half of all space travelers during their adaptation to weightlessness once in orbit. It is the opposite of terrestrial motion sickness since it occurs when the environment and the person appear visually to be in motion relative to one another even though there is no corresponding sensation of bodily movement originating from the vestibular system.
Airsickness is a specific form of motion sickness which is induced by air travel and is considered a normal response in healthy individuals. Airsickness occurs when the central nervous system receives conflicting messages from the body affecting balance and equilibrium. Whereas commercial airline passengers may simply feel poorly, the effect of airsickness on military aircrew may lead to a decrement in performance and adversely affect the mission.
A motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom and three translational or linear degrees of freedom.
Vertigo is a condition in which a person has the sensation that they are moving, or that objects around them are moving, when they are not. Often it feels like a spinning or swaying movement. It may be associated with nausea, vomiting, perspiration, or difficulties walking. It is typically worse when the head is moved. Vertigo is the most common type of dizziness.
Cinnarizine is an antihistamine and calcium channel blocker of the diphenylmethylpiperazine group. It is prescribed for nausea and vomiting due to motion sickness or other sources such as chemotherapy, vertigo, or Ménière's disease. Cinnarizine is one of the leading causes of drug-induced parkinsonism.
Virtual reality in telerehabilitation is a method used first in the training of musculoskeletal patients using asynchronous patient data uploading, and an internet video link. Subsequently, therapists using virtual reality-based telerehabilitation prescribe exercise routines via the web which are then accessed and executed by patients through a web browser. Therapists then monitor the patient's progress via the web and modify the therapy asynchronously without real-time interaction or training.
In virtual reality (VR), immersion is the perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR system in images, sound or other stimuli that provide an engrossing total environment.
The sopite syndrome is a neurological disorder that relates symptoms of fatigue, drowsiness, and mood changes to prolonged periods of motion. The sopite syndrome has been attributed to motion-induced drowsiness such as that experienced by a baby when rocked. Researchers Ashton Graybiel and James Knepton at the US Naval Aerospace Medical Research Laboratory first used the term "the sopite syndrome" in 1976, to refer to the sometimes sole manifestation of motion sickness, though other researchers have referred to it as "Sopite syndrome."
Illusions of self-motion occur when one perceives bodily motion despite no movement taking place. One can experience illusory movements of the whole body or of individual body parts, such as arms or legs.
In psychophysical perception, the Coriolis effect is the misperception of body orientation due to head movement while under the effect of rotation, often inducing nausea. This effect comes about as the head is moved in contrary or similar motion with the body during the time of a spin. This goes on to affect the vestibular system, particularly the semicircular canals which are affected by the acceleration. This causes a sense of dizziness or nausea before equilibrium is restored after the head returns to a stabilized state. Crucially, this illusion is based entirely upon perception, and is largely due to conflicting signals between one's sight and one's perception of their body position or motion. Examples of situations where this can arise are circular acceleration and movement during a circular rotation.
The righting reflex, also known as the labyrinthine righting reflex, or the Cervico-collic reflex; is a reflex that corrects the orientation of the body when it is taken out of its normal upright position. It is initiated by the vestibular system, which detects that the body is not erect and causes the head to move back into position as the rest of the body follows. The perception of head movement involves the body sensing linear acceleration or the force of gravity through the otoliths, and angular acceleration through the semicircular canals. The reflex uses a combination of visual system inputs, vestibular inputs, and somatosensory inputs to make postural adjustments when the body becomes displaced from its normal vertical position. These inputs are used to create what is called an efference copy. This means that the brain makes comparisons in the cerebellum between expected posture and perceived posture, and corrects for the difference. The reflex takes 6 or 7 weeks to perfect, but can be affected by various types of balance disorders.
Space neuroscience or astroneuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.
Astronaut training describes the complex process of preparing astronauts in regions around the world for their space missions before, during and after the flight, which includes medical tests, physical training, extra-vehicular activity (EVA) training, wilderness survival training, water survival training, robotics training, procedure training, rehabilitation process, as well as training on experiments they will accomplish during their stay in space.
The health effects of 3D are the aspects in which the human body is altered after the exposure of three-dimensional (3D) graphics. These health effects typically only occur when viewing stereoscopic, autostereoscopic, and multiscopic displays. Newer types of 3D displays like light field or holographic displays do not cause the same health effects. The viewing of 3D stereoscopic stimuli can cause symptoms related to vision disorders that the individual already had, as a person with a healthy binocular vision shouldn't experience any side effects under three-dimensional exposure.
Simulator sickness is a subset of motion sickness that is typically experienced while playing video games from first-person perspective. It was discovered in the context of aircraft pilots who undergo training for extended periods of time in flight simulators. Due to the spatial limitations imposed on these simulators, perceived discrepancies between the motion of the simulator and that of the vehicle can occur and lead to simulator sickness. It is similar to motion sickness in many ways, but occurs in simulated environments and can be induced without actual motion. Symptoms of simulator sickness include discomfort, apathy, drowsiness, disorientation, fatigue, and nausea. These symptoms can reduce the effectiveness of simulators in flight training and result in systematic consequences such as decreased simulator use, compromised training, ground safety, and flight safety. Pilots are less likely to want to repeat the experience in a simulator if they have suffered from simulator sickness and hence can reduce the number of potential users. It can also compromise training in two safety-critical ways:
There are many applications of virtual reality (VR). Applications have been developed in a variety of domains, such as architectural and urban design, industrial designs, restorative nature experiences, healthcare and clinical therapies, digital marketing and activism, education and training, engineering and robotics, entertainment, virtual communities, fine arts, heritage and archaeology, occupational safety, as well as social science and psychology.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)