Flight simulator

Last updated

F/A-18 Hornet flight simulator aboard the USS Independence aircraft carrier 980310-N-7355H-003 Simulator Training.jpg
F/A-18 Hornet flight simulator aboard the USS Independence aircraft carrier

A flight simulator is a device that artificially re-creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes. It includes replicating the equations that govern how aircraft fly, how they react to applications of flight controls, the effects of other aircraft systems, and how the aircraft reacts to external factors such as air density, turbulence, wind shear, cloud, precipitation, etc. Flight simulation is used for a variety of reasons, including flight training (mainly of pilots), the design and development of the aircraft itself, and research into aircraft characteristics and control handling qualities. [1]

Contents

History of flight simulation

In 1910, on the initiative of the French commanders Clolus and Laffont and Lieutenant Clavenad, the first ground training aircraft for military aircraft were built. The "Tonneau Antoinette" (Antoinette barrel), created by the Antoinette company, seems to be the precursor of flight simulators.

World War I (1914–1918)

An area of training was for air gunnery handled by the pilot or a specialist air gunner. Firing at a moving target requires aiming ahead of the target (which involves the so-called lead angle) to allow for the time the bullets require to reach the vicinity of the target. This is sometimes also called "deflection shooting" and requires skill and practice. During World War I, some ground-based simulators were developed to teach this skill to new pilots. [2]

The 1920s and 1930s

Link Trainer patent drawing, 1930 Edlink pt1930.jpg
Link Trainer patent drawing, 1930

The best-known early flight simulation device was the Link Trainer, produced by Edwin Link in Binghamton, New York, USA, which he started building in 1927. He later patented his design, which was first available for sale in 1929. The Link Trainer was a basic metal frame flight simulator usually painted in its well-known blue color. Some of these early war era flight simulators still exist, but it is becoming increasingly difficult to find working examples. [3]

The Link family firm in Binghamton manufactured player pianos and organs, and Ed Link was therefore familiar with such components as leather bellows and reed switches. He was also a pilot, but dissatisfied with the amount of real flight training that was available, he decided to build a ground-based device to provide such training without the restrictions of weather and the availability of aircraft and flight instructors. His design had a pneumatic motion platform driven by inflatable bellows which provided pitch and roll cues. A vacuum motor similar to those used in player pianos rotated the platform, providing yaw cues. A generic replica cockpit with working instruments was mounted on the motion platform. When the cockpit was covered, pilots could practice flying by instruments in a safe environment. The motion platform gave the pilot cues as to real angular motion in pitch (nose up and down), roll (wing up or down) and yaw (nose left and right). [4]

Initially, aviation flight schools showed little interest in the "Link Trainer". Link also demonstrated his trainer to the U.S. Army Air Force (USAAF), but with no result. However, the situation changed in 1934 when the Army Air Force was given a government contract to fly the postal mail. This included having to fly in bad weather as well as good, for which the USAAF had not previously carried out much training. During the first weeks of the mail service, nearly a dozen Army pilots were killed. The Army Air Force hierarchy remembered Ed Link and his trainer. Link flew in to meet them at Newark Field in New Jersey, and they were impressed by his ability to arrive on a day with poor visibility, due to practice on his training device. The result was that the USAAF purchased six Link Trainers, and this can be said to mark the start of the world flight simulation industry. [4]

World War II (1939–1945)

Military Personnel Using Link Trainer, Pepperell Manufacturing Co., 1943 Military Personnel Using Link Trainer, Pepperell Manufacturing Company (11327128056).jpg
Military Personnel Using Link Trainer, Pepperell Manufacturing Co., 1943

The principal pilot trainer used during World War II was the Link Trainer. Some 10,000 were produced to train 500,000 new pilots from allied nations, many in the US and Canada because many pilots were trained in those countries before returning to Europe or the Pacific to fly combat missions. [4] Almost all US Army Air Force pilots were trained in a Link Trainer. [5]

A different type of World War II trainer was used for navigating at night by the stars. The Celestial Navigation Trainer of 1941 was 13.7 m (45 ft) high and capable of accommodating the navigation team of a bomber crew. It enabled sextants to be used for taking "star shots" from a projected display of the night sky. [4]

1945 to the 1960s

In 1954 United Airlines bought four flight simulators at a cost of $3 million from Curtiss-Wright that were similar to the earlier models, with the addition of visuals, sound and movement. This was the first of today's modern flight simulators for commercial aircraft. [6]

Today

The simulator manufacturers are consolidating and integrate vertically as training offers double-digit growth: CAE forecast 255,000 new airline pilots from 2017 to 2027 (70 a day), and 180,000 first officers evolving to captains. The largest manufacturer is Canadian CAE Inc. with a 70% market share and $2.8 billion annual revenues, manufacturing training devices for 70 years but moved into training in 2000 with multiple acquisitions. Now CAE makes more from training than from producing the simulators. Crawley-based L3 CTS entered the market in 2012 by acquiring Thales Training & Simulation's manufacturing plant near Gatwick Airport where it assembles up to 30 devices a year, then UK CTC training school in 2015, Aerosim in Sanford, Florida in 2016, and Portuguese academy G Air in October 2017. [7]

With a 20% market share, equipment still accounts for more than half of L3 CTS turnover but that could soon be reversed as it educates 1,600 commercial pilots each year, 7% of the 22,000 entering the profession annually, and aims for 10% in a fragmented market. The third largest is TRU Simulation + Training, created in 2014 when parent Textron Aviation merged its simulators with Mechtronix, OPINICUS and ProFlight, focusing on simulators and developing the first full-flight simulators for the 737 MAX and the 777X. The fourth is FlightSafety International, focused on general, business and regional aircraft. Airbus and Boeing have invested in their own training centres, aiming for higher margins than aircraft manufacturing like MRO, competing with their suppliers CAE and L3. [7]

In June 2018, there were 1,270 commercial airline simulators in service, up by 50 over a year: 85% FFSs and 15% FTDs. CAE supplied 56% of this installed base, L3 CTS 20% and FlightSafety International 10%, while CAE's training centres are the largest operator, with a 13% share. North America has 38% of the world's training devices, Asia-Pacific 25% and Europe 24%. Boeing types represent 45% of all simulated aircraft, followed by Airbus with 35%, then Embraer at 7%, Bombardier at 6% and ATR at 3%. [8]

Types of flight training devices in service

Training for pilots

Cockpit of a twinjet flight simulator. AC97-0295-13 a.jpeg
Cockpit of a twinjet flight simulator.

Several different devices are utilized in modern flight training. Cockpit Procedures Trainer (CPT) are used to practice basic cockpit procedures, such as processing emergency checklists, and for cockpit familiarization. Certain aircraft systems may or may not be simulated. The aerodynamic model is usually extremely generic if present at all. [9]

Technology

Motion

Statistically significant assessments of skill transfer based on training on a simulator and leading to handling an actual aircraft are difficult to make, particularly where motion cues are concerned. Large samples of pilot opinion are required and many subjective opinions tend to be aired, particularly by pilots not used to making objective assessments and responding to a structured test schedule. For many years, it was believed that 6 DOF motion-based simulation gave the pilot closer fidelity to flight control operations and aircraft responses to control inputs and external forces and gave a better training outcome for students than non-motion-based simulation. This is described as "handling fidelity", which can be assessed by test flight standards such as the numerical Cooper-Harper rating scale for handling qualities. Recent scientific studies have shown that the use of technology such as vibration or dynamic seats within flight simulators can be equally effective in the delivery of training as large and expensive 6-DOF FFS devices. [10] [11]

Qualification and approval

Full flight simulator of a Boeing 737 Baltic Aviation Academy Airbus B737 Full Flight Simulator (FFS).jpg
Full flight simulator of a Boeing 737

Procedure

Before September 2018, [12] when a manufacturer wished to have an ATD model approved, a document that contains the specifications for the model line and that proves compliance with the appropriate regulations is submitted to the FAA. Once this document, called a Qualification Approval Guide (QAG), has been approved, all future devices conforming to the QAG are automatically approved and individual evaluation is neither required nor available. [13]

The actual procedure accepted by all CAAs (Civil Aviation Authorities) around the world is to propose 30 days prior qualification date (40 days for CAAC) a MQTG document (Master Qualification Test Guide), which is proper to a unique simulator device and will live along the device itself, containing objective, and functional and subjective tests to demonstrate the representativeness of the simulator compare to the airplane. The results will be compared to Flight Test Data provided by aircraft OEMs or from test campaign ordered by simulator OEMs or also can be compared by POM (Proof Of Match) data provided by aircraft OEMs development simulators. Some of the QTGs will be rerun during the year to prove during continuous qualification that the simulator is still in the tolerances approved by the CAA. [14] [15] [16]

Flight simulator "levels" and other categories

The following levels of qualification are currently being granted for both airplane and helicopter FSTD:

US Federal Aviation Administration (FAA)

Aviation Training Device (ATD) [17]
  • FAA Basic ATD (BATD) – Provides an adequate training platform and design for both procedural and operational performance tasks specific to the ground and flight training requirements for Private Pilot Certificate and instrument rating per Title 14 of the Code of Federal Regulations.
  • FAA Advanced ATD (AATD) – Provides an adequate training platform for both procedural and operational performance tasks specific to the ground and flight training requirements for Private Pilot Certificate, instrument rating, Commercial Pilot Certificate, and Airline Transport Pilot (ATP) Certificate, and Flight Instructor Certificate.
Flight Training Devices (FTD) [18]
  • FAA FTD Level 4 – Similar to a Cockpit Procedures Trainer (CPT). This level does not require an aerodynamic model, but accurate systems modeling is required.
  • FAA FTD Level 5 – Aerodynamic programming and systems modeling is required, but it may represent a family of aircraft rather than only one specific model.
  • FAA FTD Level 6 – Aircraft-model-specific aerodynamic programming, control feel, and physical cockpit are required.
  • FAA FTD Level 7 – Model specific. All applicable aerodynamics, flight controls, and systems must be modeled. A vibration system must be supplied. This is the first level to require a visual system.
Full Flight Simulators (FFS) [19]
  • FAA FFS Level A – A motion system is required with at least three degrees of freedom. Airplanes only.
  • FAA FFS Level B – Requires three axis motion and a higher-fidelity aerodynamic model than does Level A. The lowest level of helicopter flight simulator.
  • FAA FFS Level C – Requires a motion platform with all six degrees of freedom. Also lower transport delay (latency) over levels A & B. The visual system must have an outside-world horizontal field of view of at least 75 degrees for each pilot.
  • FAA FFS Level D – The highest level of FFS qualification currently available. Requirements are for Level C with additions. The motion platform must have all six degrees of freedom, and the visual system must have an outside-world horizontal field of view of at least 150 degrees, with a collimated (distant focus) display. Realistic sounds in the cockpit are required, as well as a number of special motion and visual effects.

European Aviation Safety Agency (EASA, ex JAA)

Flight Navigation and Procedures Trainer (FNPT) [20]
  • EASA FNPT Level I
  • EASA FNPT Level II
  • EASA FNPT Level III – Helicopter only.
  • MCC – Not a true "level" of qualification, but an add-on that allows any level of FNPT to be used for Multi Crew Coordination training.
Flight Training Devices (FTD) [20]
  • EASA FTD Level 1
  • EASA FTD Level 2
  • EASA FTD Level 3 – Helicopter only.
Full Flight Simulators (FFS) [20]
  • EASA FFS Level A
  • EASA FFS Level B
  • EASA FFS Level C
  • EASA FFS Level D

Modern high-end flight simulators

Stewart platform Hexapod general Anim.gif
Stewart platform

Vertical Motion Simulator (VMS) at NASA/Ames

The largest flight simulator in the world is the Vertical Motion Simulator (VMS) at NASA Ames Research Center, south of San Francisco. This has a very large-throw motion system with 60 feet (+/- 30 ft) of vertical movement (heave). The heave system supports a horizontal beam on which are mounted 40 ft rails, allowing lateral movement of a simulator cab of +/- 20 feet. A conventional 6-degree of freedom hexapod platform is mounted on the 40 ft beam, and an interchangeable cabin is mounted on the platform. This design permits quick switching of different aircraft cabins. Simulations have ranged from blimps, commercial and military aircraft to the Space Shuttle. In the case of the Space Shuttle, the large Vertical Motion Simulator was used to investigate a longitudinal pilot-induced oscillation (PIO) that occurred on an early Shuttle flight just before landing. After identification of the problem on the VMS, it was used to try different longitudinal control algorithms and recommend the best for use in the Shuttle program. [21]

Disorientation training

AMST Systemtechnik GmbH (AMST) of Austria and Environmental Tectonics Corporation (ETC) of Philadelphia, US, manufacture a range of simulators for disorientation training, that have full freedom in yaw. The most complex of these devices is the Desdemona simulator at the TNO Research Institute in The Netherlands, manufactured by AMST. This large simulator has a gimballed cockpit mounted on a framework which adds vertical motion. The framework is mounted on rails attached to a rotating platform. The rails allow the simulator cab to be positioned at different radii from the centre of rotation and this gives a sustained G capability up to about 3.5. [22] [23]

Amateur and video game flight simulation

See also

Related Research Articles

Aircraft pilot Person controlling an aircraft in flight

An aircraft pilot or aviator is a person who controls the flight of an aircraft by operating its directional flight controls. Some other aircrew members, such as navigators or flight engineers, are also considered aviators, because they are involved in operating the aircraft's navigation and engine systems. Other aircrew members, such as drone operators, flight attendants, mechanics and ground crew, are not classified as aviators.

Stick shaker Mechanical device in an aircraft cockpit to warn the pilot of an imminent stall

A stick shaker is a mechanical device designed to rapidly and noisily vibrate the control yoke of an aircraft, warning the flight crew that an imminent aerodynamic stall has been detected. It is typically present on the majority of large civil jet aircraft, as well as most large military planes.

CAE Inc. Canadian company

CAE Inc. is a Canadian manufacturer of simulation technologies, modelling technologies and training services to airlines, aircraft manufacturers, healthcare specialists, and defence customers. CAE was founded in 1947, and has manufacturing operations and training facilities in 35 countries. In 2017, the company's annual revenue was CAD $2.705 billion.

Combat flight simulators are vehicle simulation games, amateur flight simulation computer programs used to simulate military aircraft and their operations. These are distinct from dedicated flight simulators used for professional pilot and military flight training which consist of realistic physical recreations of the actual aircraft cockpit, often with a full-motion platform.

Motion simulator

A motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom and three translational or linear degrees of freedom.

Thales Training & Simulation Ltd. is a multinational company which manufactures simulators, including full flight simulators and military simulators, and provides related training and support services. It is a wholly owned subsidiary of the Thales Group.

Frasca International, Inc., is an American manufacturer of flight simulation training devices, with over 3000 training devices delivered in approximately 70 countries throughout the world. Now based in Urbana, Illinois, Frasca International was founded in Champaign, Illinois in 1958 by Rudy Frasca. Frasca flight simulators are used in all segments of the aviation industry, including their extensive use in many prominent college aviation programs, including Purdue University, Indiana State University, Embry-Riddle Aeronautical University, University of North Dakota, Louisiana Tech University, University of Illinois, and Western Michigan University.

Full flight simulator

Full flight simulator (FFS) is a term used by national (civil) aviation authorities (NAA) for a high technical level of flight simulator. Such authorities include the Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA).

A Control Loading System, is used to provide pilots with realistic flight control forces in a flight simulator or training device. These are used in both commercial and military training applications.

Sabena Flight Academy

CAE Oxford Aviation Academy Brussels - Sabena Flight Academy is an aviation training organisation created in 1953, and located in Steenokkerzeel (Belgium). The school is now part of CAE Global Academy. The training is performed in Brussels, in Mesa at CAE Oxford Aviation Academy Phoenix . Sabena Flight Academy is one of the oldest airline transport pilot schools in Europe.

Amateur flight simulation Video game genre

Amateur flight simulation refers to the simulation of various aspects of flight or the flight environment for purposes other than flight training or aircraft development. A significant community of simulation enthusiasts is supported by several commercial software packages, as well as commercial and homebuilt hardware. Open-source software that is used by the Aerospace industry like FlightGear, whose flight dynamics engine (JSBSim) is used in a 2015 NASA benchmark to judge new simulation code to space industry standards, is also available for amateur use. A popular type of amateur flight simulators are combat flight simulators, which simulate combat air operations from the pilot and crew's point of view. Combat flight simulation titles are more numerous than civilian flight simulators due to variety of subject matter available and market demand.

Mechtronix Inc. was a Canadian company specializing in the manufacture of flight simulation training devices (FSTD) for commercial, general and business aviation. The company was founded in 1987 and based out of Montreal in Canada's aviation hub with a customer base in the Americas, Europe, the Middle-East and Asia. Mechtronix' products range from full flight simulators (FFS) to flight training devices (FTD). They have technical support centers located around the globe to support worldwide customers that include airlines, training centers and training organizations. The company was acquired by Textron in 2013 and was merged into a new entity called TRU Simulation + Training and represents the simulator development and manufacturing wing of the company.

AXIS Flight Training Systems

AXIS Flight Training Systems GmbH supplies EASA- and FAA-compliant flight training equipment, from flat panel trainers to full flight simulators. It was founded in 2004 in Graz/Austria. Their first design was a level D full flight simulator. In 2005 they produced a level D full flight simulator with an Equipe collimated visual system and a Rexroth hydraulic motion base.

Grob G 120TP Two-seat turboprop training and aerobatic low-wing aircraft

The Grob G 120TP is a two-seat turboprop training and aerobatic low-wing aircraft with a composite airframe, built by Grob Aircraft. It is based on the Grob G 120A training aircraft and has been developed for military and civil pilots training. It has a retractable tricycle landing gear and a low tailplane.

Link Aviation Devices was a manufacturer of aircraft simulators. It is currently a subsidiary of CAE Incorporated.

CAE Phoenix

CAE Phoenix is an aviation school owned by CAE and located in Mesa at Falcon Field Airport. A former subsidiary of Sabena Flight Academy, the school trains students including those of Air Algérie, SFA, Nationale Luchtvaartschool (NLS), Turkish Airlines, Shenzhen Airlines, EVA Air, British Airways, Southwest Airlines, Japan Airlines, jetBlue, American Airlines, Emirates, EasyJet, CityJet, IndiGo, Aeromexico and AirAsia.

Unmanned aircraft system simulation focuses on training pilots to control an unmanned aircraft or its payload from a control station. Flight simulation involves a device that artificially re-creates aircraft flight and the environment in which it flies for pilot training, design, or other purposes. It includes replicating the equations that govern how aircraft fly, how they react to applications of flight controls, the effects of other aircraft systems, and how the aircraft reacts to external factors such as air density, turbulence, wind shear, cloud, precipitation, etc.

BAA Training

BAA Training is an aviation training centre, headquartered in Vilnius, Lithuania and operating globally. Certified as an Approved Training Organization (ATO), BAA Training offers Fixed or Rotary wing Ab Initio, Type Rating, Cabin Crew, Ground Handling, Flight Dispatcher training including online training courses and has a capacity to prepare approximately 1,000 aviation professionals yearly. BAA Training clients come from 96 countries. Ab Initio school with its two flight bases in Spain and the fleet of 22 aircraft has over 200 students. Currently, BAA Training operates 8 full flight simulators (FFS): 4 FFS at training centre in Vilnius, Lithuania, 2 FFS in Hoh Chi Minh City, Vietnam, 1 FFS in Zhengzhou City in China, 2 FFS in Barcelona, Spain. All in all, through the extensive network of 69+ FFS in 29+ locations, BAA Training is ready to provide aviation training worldwide for more than 14 aircraft types.

Maneuvering Characteristics Augmentation System Automated flight control system developed by Boeing, contributing to two 737 MAX crashes

The Maneuvering Characteristics Augmentation System (MCAS) is a flight stabilizing program developed by Boeing which became notorious for its role in two fatal accidents of the 737 MAX, which killed all passengers and crew on both flights, 346 people in total. MCAS was first used on Boeing KC-46 Pegasus military air tanker to balance fuel loads, but the aircraft, which was based on the Boeing 767, allowed pilots to assume control of the aircraft.

Boeing 737 MAX certification

The Boeing 737 MAX was initially certified in 2017 by the U.S. Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA). However, global regulators grounded the plane in 2019 following two fatal crashes of Lion Air Flight 610 and Ethiopian Airlines Flight 302. Both crashes were linked to the Maneuvering Characteristics Augmentation System (MCAS), a new automatic flight control feature. Investigations in both crashes determined that Boeing and the FAA favored cost-saving solutions, but ultimately produced a flawed design of the MCAS instead. The FAA's Organization Designation Authorization program, allowing manufacturers to act on its behalf, was also questioned for weakening its oversight of Boeing.

References

Notes

  1. Federal Aviation Administration (25 April 2013). "FAR 121 Subpart N—Training Program" . Retrieved 28 April 2013.
  2. Bonnier Corporation (January 1919). "Dry Shooting for Airplane Gunners". Popular Science Monthly. Bonnier Corporation. pp. 13–14.
  3. Fly Away Simulation (12 July 2010). "Flight Simulator Technology Through the Years". Archived from the original on 12 October 2011. Retrieved 20 April 2011.
  4. 1 2 3 4 "ASME Landmarks: The Link Flight Trainer." Archived 17 December 2011 at the Wayback Machine American Society of Mechanical Engineers. Retrieved: 18 December 2011.
  5. "U.S. Air Force Fact Sheet: Link Trainer." National Museum of the United States Air Force. Retrieved: 12 October 2016.
  6. Hearst Magazines (September 1954). "Airline Pilots Fly Anywhere in the world – Without Leaving the Ground". Popular Mechanics. Hearst Magazines. p. 87.
  7. 1 2 Murdo Morrison (25 June 2018). "Civil simulator manufacturer strategies compared". FlightGlobal.
  8. Antoine Fafard (26 June 2018). "Analysis: Civil simulator fleet nears 1,300 mark". FlightGlobal.
  9. "Navy CPT". www.navair.navy.mil. U.S. Navy. Retrieved 4 August 2014.
  10. Andrea L. Sparko; Judith Bürki-Cohen; Tiauw H. Go (2010). Transfer of Training from a Full-Flight Simulator vs. a High Level Flight Training Device with a Dynamic Seat. AIAA Modeling and Simulation Technologies Conference. doi:10.2514/6.2010-8218.
  11. Peter John Davison. "A summary of studies conducted on the effect of motion in flight simulator pilot training" (PDF). MPL Simulator Solutions. Retrieved 12 November 2019.
  12. FAA AC 61-136B
  13. FAA AC 61-136A
  14. FAA CFR Part 60
  15. EASA CS-FSTD(a) Issue 2
  16. CAAC CCAR-60
  17. AC-61-136A Appendix 1 and 2
  18. 14 CFR Part 60, Appendices B and D
  19. 14 CFR Part 60, Appendices A and C
  20. 1 2 3 CS-FSTD A and CS-FSTD H
  21. Beard, Steven; et al. "Space Shuttle Landing and Rollout Training at the Vertical Motion Simulator" (PDF). AIAA. Retrieved 5 February 2014.
  22. "DESDEMONA: The next generation in movement simulation" Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek Retrieved: 5 July 2012.
  23. Roza, M., M. Wentink and Ph. Feenstra. "Performance Testing of the Desdemona Motion System." AIAA MST, Hilton Head, South Carolina, 20–23 August 2007.

Bibliography

  • Kelly, Lloyd L. as told to Robert B. Parke. The Pilot Maker. New York: Grosset & Dunlap, 1979, First edition 1970. ISBN   0-448-02226-5.