Synthetic vision system

Last updated
A modern synthetic vision system produced by Honeywell Synthetic Vision.JPG
A modern synthetic vision system produced by Honeywell

A synthetic vision system (SVS) is a computer-mediated reality system for aerial vehicles, that uses 3D to provide pilots with clear and intuitive means of understanding their flying environment.

Contents

Functionality

Synthetic vision provides situational awareness to the operators by using terrain, obstacle, geo-political, hydrological and other databases. A typical SVS application uses a set of databases stored on board the aircraft, an image generator computer, and a display. Navigation solution is obtained through the use of GPS and inertial reference systems.

Highway In The Sky (HITS), or Path-In-The-Sky, is often used to depict the projected path of the aircraft in perspective view. Pilots acquire instantaneous understanding of the current as well as the future state of the aircraft with respect to the terrain, towers, buildings and other environment features.

History

A forerunner to such systems existed in the 1960s, with the debut into U.S. Navy service of the Grumman A-6 Intruder carrier-based medium-attack aircraft. Designed with a side-by-side seating arrangement for the crew, the Intruder featured an advanced navigation/attack system, called the Digital Integrated Attack and Navigation Equipment (DIANE), which linked the aircraft's radar, navigation and air data systems to a digital computer known as the AN/ASQ-61. Information from DIANE was displayed to both the Pilot and Bombardier/Navigator (BN) through cathode ray tube display screens. In particular, one of those screens, the AN/AVA-1 Vertical Display Indicator (VDI), showed the pilot a synthetic view of the world in front of the aircraft and, in Search Radar Terrain Clearance mode (SRTC), depicted the terrain detected by the radar, which was then displayed as coded lines that represented preset range increments. Called 'Contact Analog', this technology allowed the A-6 to be flown at night, in all weather conditions, at low altitude, and through rugged or mountainous terrain without the need for any visual references. [1]

Synthetic vision was developed by NASA and the U.S. Air Force in the late 1970s [2] and 1980s in support of advanced cockpit research, and in 1990s as part of the Aviation Safety Program. Development of the High Speed Civil Transport fueled NASA research in the 1980s and 1990s. In the early 1980s, the USAF recognized the need to improve cockpit situation awareness to support piloting ever more complex aircraft, and pursued SVS (also called pictorial format avionics) as an integrating technology for both manned and remotely piloted systems. [3]

Simulations and remotely piloted vehicles

In 1979, the FS1 Flight Simulator by Bruce Artwick for the Apple II microcomputer introduced recreational uses of synthetic vision. [4]

HiMAT Remotely Piloted Aircraft Cockpit with Synthetic Vision Display Himatcockpit2.jpg
HiMAT Remotely Piloted Aircraft Cockpit with Synthetic Vision Display

NASA used synthetic vision for remotely piloted vehicles (RPVs), such as the High Maneuverability Aerial Testbed or HiMAT. [5] According to the report by NASA, the aircraft was flown by a pilot in a remote cockpit, and control signals up-linked from the flight controls in the remote cockpit on the ground to the aircraft, and aircraft telemetry downlinked to the remote cockpit displays (see photo). The remote cockpit could be configured with either nose camera video or with a 3D synthetic vision display. SV was also used for simulations of the HiMAT. Sarrafian reports that the test pilots found the visual display to be comparable to output of camera on board the RPV. [5]

The 1986 RC Aerochopper simulation by Ambrosia Microcomputer Products, Inc. used synthetic vision to aid aspiring RC aircraft pilots in learning to fly. The system included joystick flight controls which would connect to an Amiga computer and display. [6] The software included a three-dimensional terrain database for the ground as well as some man-made objects. This database was basic, representing the terrain with relatively small numbers of polygons by today's standards. The program simulated the dynamic three-dimensional position and attitude of the aircraft using the terrain database to create a projected 3D perspective display. The realism of this RPV pilot training display was enhanced by allowing the user to adjust the simulated control system delays and other parameters.

Similar research continued in the U.S. military services, and at Universities around the world. In 1995-1996, North Carolina State University flew a 17.5% scale F-18 RPV using Microsoft Flight Simulator to create the three-dimensional projected terrain environment. [7]

In flight

A synthetic vision system that was tested by NASA in a Gulfstream V business jet in 2004. NASA Synthetic Vision Display.jpg
A synthetic vision system that was tested by NASA in a Gulfstream V business jet in 2004.

In 2005 a synthetic vision system was installed on a Gulfstream V test aircraft as part of NASA's "Turning Goals Into Reality" program. [8] Much of the experience gained during that program led directly to the introduction of certified SVS on future aircraft. NASA initiated industry involvement in early 2000 with major avionics manufacturers.

Eric Theunissen, a researcher at Delft University of Technology in the Netherlands, contributed to the development of SVS technology. [9]

At the end of 2007 and early 2008, the FAA certified the Gulfstream Synthetic Vision-Primary flight display (SV-PFD) system for the G350/G450 and G500/G550 business jet aircraft, displaying 3D color terrain images from the Honeywell EGPWS data overlaid with the PFD symbology. [10] It replaces the traditional blue-over-brown artificial horizon.

In 2017, Avidyne Corporation certified Synthetic Vision capability for its air navigation avionics. [11] Other glass cockpit systems such as the Garmin G1000 and the Rockwell Collins Pro Line Fusion offer synthetic terrain.

Lower-cost, non-certified avionics offer synthetic vision like apps available for Android or iPad tablet computers from ForeFlight, [12] Garmin, [13] Air Navigation Pro, [14] or Hilton Software [15]

Regulations and standards

See also

Related Research Articles

<span class="mw-page-title-main">Avionics</span> Electronic systems used on aircraft

Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

<span class="mw-page-title-main">Flight simulator</span> Technology used for training aircrew

A flight simulator is a device that artificially re-creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes. It includes replicating the equations that govern how aircraft fly, how they react to applications of flight controls, the effects of other aircraft systems, and how the aircraft reacts to external factors such as air density, turbulence, wind shear, cloud, precipitation, etc. Flight simulation is used for a variety of reasons, including flight training, the design and development of the aircraft itself, and research into aircraft characteristics and control handling qualities.

<span class="mw-page-title-main">Head-up display</span> Transparent display presenting data within normal sight lines of the user

A head-up display, or heads-up display, also known as a HUD or head-up guidance system (HGS), is any transparent display that presents data without requiring users to look away from their usual viewpoints. The origin of the name stems from a pilot being able to view information with the head positioned "up" and looking forward, instead of angled down looking at lower instruments. A HUD also has the advantage that the pilot's eyes do not need to refocus to view the outside after looking at the optically nearer instruments.

<span class="mw-page-title-main">Glass cockpit</span> Aircraft instrumentation system consisting primarily of multi-function electronic displays

A glass cockpit is an aircraft cockpit that features an array of electronic (digital) flight instrument displays, typically large LCD screens, rather than traditional analog dials and gauges. While a traditional cockpit relies on numerous mechanical gauges to display information, a glass cockpit uses several multi-function displays driven by flight management systems, that can be adjusted to display flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has also become widely available in small aircraft.

In aviation, a controlled flight into terrain is an accident in which an airworthy aircraft, fully under pilot control, is unintentionally flown into the ground, a mountain, a body of water or an obstacle. In a typical CFIT scenario, the crew is unaware of the impending collision until impact, or it is too late to avert. The term was coined by engineers at Boeing in the late 1970s.

<span class="mw-page-title-main">Cirrus SR20</span> Single-engine general aviation aircraft

The Cirrus SR20 is an American piston-engined, four- or five-seat composite monoplane built since 1999 by Cirrus Aircraft of Duluth, Minnesota. The aircraft is the company's earliest type-certified model, earning certification in 1998.

<span class="mw-page-title-main">Garmin G1000</span> Electronic flight instrument system

The Garmin G1000 is an electronic flight instrument system (EFIS) typically composed of two display units, one serving as a primary flight display, and one as a multi-function display. Manufactured by Garmin Aviation, it serves as a replacement for most conventional flight instruments and avionics. Introduced in June 2004, the system has since become one of the most popular integrated glass cockpit solutions for general aviation and business aircraft.

<span class="mw-page-title-main">Shuttle Training Aircraft</span> Training aircraft for the Space Shuttle

The Shuttle Training Aircraft (STA) is a former NASA training vehicle that duplicated the Space Shuttle's approach profile and handling qualities, allowing pilots to simulate Shuttle landings under controlled conditions before attempting the task on board the orbiter. The STA was also flown to assess weather conditions just prior to Space Shuttle launches and landings.

<span class="mw-page-title-main">Cirrus SR22</span> Single engine general aviation aircraft

The Cirrus SR22 is a single-engine four- or five-seat composite aircraft built from 2001 by Cirrus Aircraft of Duluth, Minnesota.

<span class="mw-page-title-main">Rockwell HiMAT</span> Type of aircraft

The Rockwell RPRV-870 HiMAT is an experimental remotely piloted aircraft that was produced for a NASA program to develop technologies for future fighter aircraft. Among the technologies explored were close-coupled canards, fully digital flight control, composite materials, remote piloting, synthetic vision systems, winglets, and others.

Chelton Flight Systems designs and manufactures advanced avionics and flight controls. Based in Boise, Idaho, Chelton Flight Systems originally started out as Sierra Flight Systems. The company was co-founded by Gordon Pratt and Rick Price in 1997. It is part of Genesys Aerosystems since 2014.

<span class="mw-page-title-main">Avidyne Entegra</span> Electronic flight instrument system

Avidyne Entegra is an integrated aircraft instrumentation system, produced by Avidyne Corporation, consisting of a primary flight display (PFD), and multi-function display (MFD). Cirrus became the first customer of the Entegra system and began offering it on the SR20 and SR22 aircraft in 2003 as the first integrated flight deck for light general aviation (GA). The original Entegra system was designed to use third-party components such as a GPS from Garmin and an autopilot system from S-TEC Corporation.

Avidyne Corporation is an avionics company based in Melbourne, Florida. Avidyne is developer of Integrated Avionics Systems, multi-function displays, and traffic advisory systems for light general aviation (GA) aircraft. Headquartered in Melbourne, Florida, the company has facilities in Melbourne, as well as Concord, Massachusetts; Columbus, Ohio; and Boulder, Colorado.

Universal Avionics Systems Corporation, also known as Universal Avionics, is an international company headquartered in Tucson, Arizona in the United States. It primarily focuses on flight management systems (FMS) and cockpit instrument displays for private, business, and commercial aircraft. The company has domestic offices in Arizona, Kansas, Washington, and Georgia, and overseas offices in Switzerland.

L-3 SmartDeck - is a fully integrated cockpit system originally developed by L-3 Avionics Systems. and acquired in 2010 by Esterline CMC Electronics through an exclusive licensing agreement.

The enhanced avionics system is an integrated modular avionics suite and cockpit display system used on Dassault Falcon business jets since Falcon 900EX, and later used in other newer Falcon aircraft such as Falcon 2000EX and Falcon 7X.

<span class="mw-page-title-main">Garmin G3000</span> Integrated avionics package

The Garmin G3000 is an avionics interface system designed by Garmin Aviation for light turbine aircraft. The integrated touchscreen system contains multiple glass cockpit displays for operating a synthetic vision system and a three-dimensional displayed rendering of terrain.

<span class="mw-page-title-main">Honeywell Primus</span> Electronic flight instrument system

Honeywell Primus is a range of Electronic Flight Instrument System (EFIS) glass cockpits manufactured by Honeywell Aerospace. Each system is composed of multiple display units used as primary flight display and multi-function display.

An external vision system (XVS) refers to any of several methods to provide the pilot of an aircraft with a means to see outside the aircraft where traditional windscreens may not be feasible due to the aircraft configuration. An XVS would consist of external sensors, primarily video imagery, which is provided to the pilot(s) in real time via one or more displays intended to augment or replace the windscreen.

<span class="mw-page-title-main">Enhanced flight vision system</span> Airborne system with imaging sensors

An enhanced flight vision system is an airborne system which provides an image of the scene and displays it to the pilot, in order to provide an image in which the scene and objects in it can be better detected. In other words, an EFVS is a system which provides the pilot with an image which is better than unaided human vision. An EFVS includes imaging sensors such as a color camera, infrared camera or radar, and typically a display for the pilot, which can be a head-mounted display or head-up display. An EFVS may be combined with a synthetic vision system to create a combined vision system.

References

  1. Andrews, Hal. "Life of the Intruder". Naval Aviation News, Volume 79, No. 6, September-October 1997, pp 8-16.{{cite magazine}}: Cite magazine requires |magazine= (help)
  2. Knox; et al. (October 1977). "Description of Path-In-The-Sky Contact Analog Piloting Display" (PDF). Technical Memorandum 74057. NASA.
  3. Way; et al. (May 1984). "Pictorial Format Display Evaluation" (PDF). AFWAL-TR-34-3036. USAF.
  4. Jos Grupping (2001). "Introduction". Flight Simulator History.[ self-published source? ]
  5. 1 2 Sarrafian, S (August 1984). "Simulator Evaluation of a Remotely Piloted Vehicle Lateral Landing Task Using a Visual Display" (PDF). Technical Memorandum 85903. NASA. doi:10.2514/6.1984-2095. hdl: 2060/19840021816 .
  6. Stern, D: "RC Aerochopper Owners Manual", Ambrosia Microcomputer Products, Inc., 1986
  7. "Flight Research (The F18 Project)". North Carolina State University. Archived from the original on 2008-01-10.
  8. "Turning Goals into Reality 2005 Award Winners". NASA Aeronautics Research Mission Directorate.
  9. Theunissen; et al. (August 2005). "Guidance, Situation Awareness and Integrity Monitoring with an SVS+EVS". AIAA GNC Conference Proceedings. doi:10.2514/6.2005-6441. ISBN   978-1-62410-056-7.
  10. "Gulfstream scores double first as federal aviation administration certifies EVS II and synthetic vision primary flight display" (Press release). Gulfstream. January 28, 2008. Archived from the original on 2024-01-02. Retrieved 2024-01-02.
  11. "Avidyne certifies synthetic vision for FMS line". General Aviation News. 2017-03-13.
  12. "Global synthetic vision". ForeFlight.
  13. "Garmin Pilot App Adds 3-D Synthetic Vision Capability" (Press release). Garmin. February 20, 2014.
  14. "Air Navigation In Flight features including 3D view". Air Navigation. February 26, 2024.
  15. "Hilton Software".