Full flight simulator

Last updated
A Sukhoi SuperJet full flight simulator SSJ100 FFS 1 (9318513805).jpg
A Sukhoi SuperJet full flight simulator
An ATR 72 full flight simulator inflight. Atr72 flight simulator cockpit closeup.jpg
An ATR 72 full flight simulator inflight.

Full flight simulator (FFS) is a term used by national (civil) aviation authorities (NAA) for a high technical level of flight simulator. Such authorities include the Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA).

There are currently four levels of full flight simulator, levels A through D, with level D being the highest standard and being eligible for zero flight time (ZFT) training of civil pilots when converting from one airliner type to another. In about 2012, these FFS levels will be changed as a result of work by an international working group chaired by the UK Royal Aeronautical Society Flight Simulation Group (RAeS FSG), which rationalised 27 previous categories of flight training device into 7 international ones. This work has been accepted by ICAO and is published under ICAO document 9625 Issue 3. The new Type 7 Full Flight Simulator will be the old Level D with enhancements in a number of areas including motion, visual and Communications/air traffic simulations.

A Level D/Type 7 simulator simulates all aircraft systems that are accessible from the flight deck and are critical to training. For instance, accurate force feedback for the pilot's flight controls is provided through a simulator system called "control loading", and other systems such as avionics, communications and "glass cockpit" displays are also simulated.

This standard of simulator is used both for initial and recurrent training for commercial air transport (CAT) aircraft. Initial training is for conversion to a new aircraft type, and recurrent training is that which all commercial pilots must carry out at regular intervals (such as every six months) in order to retain their qualification to fly "fare-paying passengers" in CAT aircraft, loosely "airliners".

A Level D/Type 7 FFS also provides motion feedback to the crew through a motion platform upon which the simulator cabin is mounted. The motion platform must produce accelerations in all of the six degrees of freedom (6-DoF) that can be experienced by a body that is free to move in space, using a principle called acceleration onset cueing, generally using the Stewart platform design.

Collimated cross-cockpit displays

Diagram of collimated display system and a real flight simulator Collimation - diagram and real sim.jpg
Diagram of collimated display system and a real flight simulator

The display system that shows imagery of the out-the-window (OTW) world to the pilots, is generally designed so that the imagery appears at a distant focus. This is called a collimated display, a word derived from "co-linear". The reason is so that each of two pilots, sitting side by side, can see essentially the same OTW imagery without angular errors or distortions. If a simple projection screen were used instead of a collimated display, each pilot would see the OTW at different angles.

The error angle (parallax) for a simple, non-collimated projection can be estimated in the following manner:

, where

l — lateral distance between the pilots,

R — distance from the pilot's head to screen.

So at l =1.5 m and R =5 m angle .

Collimation 1 - short focus.svg
Direct projection system showing error angle for the non-flying pilot
Collimation 2 - real world.svg
Real world angles of distant objects
Collimation 3 - long focus mirror.svg
Collimating mirror allows real-world angles to be produced in a simulator
Collimated display from side.svg
Collimated display system from the side of a flight simulator
Full flight simulator display diagrams

See also

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with ,

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Flight simulator</span> Technology used for training aircrew

A flight simulator is a device that artificially re-creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes. It includes replicating the equations that govern how aircraft fly, how they react to applications of flight controls, the effects of other aircraft systems, and how the aircraft reacts to external factors such as air density, turbulence, wind shear, cloud, precipitation, etc. Flight simulation is used for a variety of reasons, including flight training, the design and development of the aircraft itself, and research into aircraft characteristics and control handling qualities.

<span class="mw-page-title-main">Collimated beam</span> Light all pointing in the same direction

A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction prevents the creation of any such beam.

Aviation is the design, development, production, operation, and use of aircraft, especially heavier-than-air aircraft. Articles related to aviation include:

<span class="mw-page-title-main">Stick shaker</span> Mechanical device in an aircraft cockpit to warn the pilot of an imminent stall

A stick shaker is a mechanical device designed to rapidly and noisily vibrate the control yoke of an aircraft, warning the flight crew that an imminent aerodynamic stall has been detected. It is typically present on the majority of large civil jet aircraft, as well as most large military planes.

<span class="mw-page-title-main">Head-up display</span> Transparent display presenting data within normal sight lines of the user

A head-up display, or heads-up display, also known as a HUD or head-up guidance system (HGS), is any transparent display that presents data without requiring users to look away from their usual viewpoints. The origin of the name stems from a pilot being able to view information with the head positioned "up" and looking forward, instead of angled down looking at lower instruments. A HUD also has the advantage that the pilot's eyes do not need to refocus to view the outside after looking at the optically nearer instruments.

Spatial disorientation is the inability to determine position or relative motion, commonly occurring during periods of challenging visibility, since vision is the dominant sense for orientation. The auditory system, vestibular system, and proprioceptive system collectively work to coordinate movement with balance, and can also create illusory nonvisual sensations, resulting in spatial disorientation in the absence of strong visual cues.

Aircraft maneuvering is referenced to a standard rate turn, also known as a rate one turn (ROT).

<span class="mw-page-title-main">Motion simulator</span> Type of mechanism

A motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom and three translational or linear degrees of freedom.

<span class="mw-page-title-main">Copa Airlines Flight 201</span> 1992 aviation accident

Copa Airlines Flight 201 was a regularly scheduled passenger flight from Tocumen International Airport in Panama City, Panama, to Alfonso Bonilla Aragón International Airport in Cali, Colombia. On 6 June 1992, the Boeing 737-204 Advanced operating the route rolled, entered a steep dive, disintegrated in mid-air, and crashed into the jungle of the Darién Gap 29 minutes after takeoff, killing all 47 people on board. The in-flight break-up was caused by faulty instrument readings and several other contributing factors, including incomplete training.

<span class="mw-page-title-main">ADC Airlines Flight 053</span> 2006 aviation accident

ADC Airlines Flight 053 (ADK053) was a scheduled passenger flight operated by ADC Airlines from Nigeria's capital of Abuja to Sokoto. On 29 October 2006, the Boeing 737-2B7 crashed onto a corn field shortly after take-off from Nnamdi Azikiwe International Airport in Abuja, killing 96 out of 105 people on board.

<span class="mw-page-title-main">Type rating</span> Certification of an airplane pilot to fly a certain type of aircraft

A type rating is an authorization entered on or associated with a pilot license and forming part thereof, stating the pilot's privileges or limitations pertaining to certain aircraft type. Such qualification requires additional training beyond the scope of the initial license and aircraft class training.

<span class="mw-page-title-main">Acceleration onset cueing</span>

Acceleration onset cueing is a term for the cueing principle used by a simulator motion platform.

<span class="mw-page-title-main">Flight simulation video game</span> Video game genre

A flight simulation video game refers to the simulation of various aspects of flight or the flight environment for purposes other than flight training or aircraft development. A significant community of simulation enthusiasts is supported by several commercial software packages, as well as commercial and homebuilt hardware. Open-source software that is used by the aerospace industry like FlightGear, whose flight dynamics engine (JSBSim) is used in a 2015 NASA benchmark to judge new simulation code to space industry standards, is also available for private use. A popular type of flight simulators video games are combat flight simulators, which simulate combat air operations from the pilot and crew's point of view. Combat flight simulation titles are more numerous than civilian flight simulators due to variety of subject matter available and market demand.

<span class="mw-page-title-main">Aircraft design process</span> Establishing the configuration and plans for a new aeroplane

The aircraft design process is a loosely defined method used to balance many competing and demanding requirements to produce an aircraft that is strong, lightweight, economical and can carry an adequate payload while being sufficiently reliable to safely fly for the design life of the aircraft. Similar to, but more exacting than, the usual engineering design process, the technique is highly iterative, involving high-level configuration tradeoffs, a mixture of analysis and testing and the detailed examination of the adequacy of every part of the structure. For some types of aircraft, the design process is regulated by civil airworthiness authorities.