Acceleration onset cueing

Last updated
An example of a 6 jack platform showing some movements Hexapod general Anim.gif
An example of a 6 jack platform showing some movements
Real world - initial acceleration Accel Onset Cue1.svg
Real world - initial acceleration
Platform follows initial acceleration Accel Onset Cue2.svg
Platform follows initial acceleration
Platform "washes out" below human motion threshold, then re-sets ready for next acceleration Accel Onset Cue3.svg
Platform "washes out" below human motion threshold, then re-sets ready for next acceleration

Acceleration onset cueing is a term for the cueing principle used by a simulator motion platform.

Contents

Motion platforms used in "Level D" full flight simulators (FFS) and equivalent military simulators have six jacks that can move the replica cockpit that is mounted on the platform in any of the six degrees of freedom (6 DOF) that can be experienced by any body free to move in space. These are the three rotations pitch (about the transverse axis), roll (about the longitudinal axis) and yaw (about the vertical axis), and three linear movements heave (up and down), sway (side to side) and surge (fore and aft). The jack layout used is generally that of the so-called Stewart platform, shown in a moving picture on the left and on which the simulator cabin will be mounted.

Phases

Acceleration onset cueing works in three phases:

  1. The initial acceleration of the vehicle being simulated is replicated closely by the platform. However, the platform jacks cannot go on moving without reaching their "limit stops" and a technique is used that prevents the stops being reached without being discernible to the simulator crew.
  2. After the above initial acceleration, the jack movement is gradually decreased, eventually to zero (this is known as the washout phase).
  3. Finally, the motion platform is reset to the neutral position but at a rate below that of the sensory threshold of the simulator crew.

Human sensing threshold and timescale

The various human body motion-sensors react to accelerations rather than steady-state motions and have thresholds below which they do not transmit signals to the brain (the latter explains why instruments are needed for safe cloud flying). Furthermore, impulses from the set of body motion sensors are processed by the brain in a timescale of milliseconds compared to longer time intervals for visual cues of the outside world (OTW) to be registered by the brain. The body motion-sensors include the inner-ear sensors, (semicircular canals and otoliths, the "vestibular sensors"), the muscle-and joint sensors, and sensors that register movements and pressures on body parts such as arms, legs and buttocks.

Simulator sickness

In the real world the brain is (subconsciously) expecting to receive the above motion cues before later registering the associated change in the visual scene. In a simulator, if motion cues are not present to back up visual cues, disorientation can result ("simulator sickness") due to the cue-mismatch compared to the real world.

The above way the body signals motion to the brain coincides very well with acceleration-onset cueing in a simulator. This is the reason why well-designed and properly set-up modern low-latency motion platforms in simulators work well for all aircraft from large transports to the low-g-force envelope of fighter aircraft.

Impact on simulator suitability

Because fighter aircraft are capable of high-g, which cannot be modelled by a 6-jack motion platform, the majority of fighter simulators are not equipped with motion platforms. [1]

In contrast, civil airliner full flight simulators to the international Level D/Type 7 standard must have a 6-axis platform, and many military simulators for large aircraft and helicopters follow the civil Level D/Type 7 design.

See also

Related Research Articles

Latency, from a general point of view, is a time delay between the cause and the effect of some physical change in the system being observed. Lag, as it is known in gaming circles, refers to the latency between the input to a simulation and the visual or auditory response, often occurring because of network delay in online games.

<span class="mw-page-title-main">Sense of balance</span> Physiological sense regarding posture

The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together; the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.

<span class="mw-page-title-main">Saccade</span> Eye movement

A saccade is a quick, simultaneous movement of both eyes between two or more phases of fixation in the same direction. In contrast, in smooth-pursuit movements, the eyes move smoothly instead of in jumps. The phenomenon can be associated with a shift in frequency of an emitted signal or a movement of a body part or device. Controlled cortically by the frontal eye fields (FEF), or subcortically by the superior colliculus, saccades serve as a mechanism for fixation, rapid eye movement, and the fast phase of optokinetic nystagmus. The word appears to have been coined in the 1880s by French ophthalmologist Émile Javal, who used a mirror on one side of a page to observe eye movement in silent reading, and found that it involves a succession of discontinuous individual movements.

<span class="mw-page-title-main">Flight simulator</span> Technology used for training aircrew

A flight simulator is a device that artificially re-creates aircraft flight and the environment in which it flies, for pilot training, design, or other purposes. It includes replicating the equations that govern how aircraft fly, how they react to applications of flight controls, the effects of other aircraft systems, and how the aircraft reacts to external factors such as air density, turbulence, wind shear, cloud, precipitation, etc. Flight simulation is used for a variety of reasons, including flight training, the design and development of the aircraft itself, and research into aircraft characteristics and control handling qualities.

<span class="mw-page-title-main">Semicircular canals</span> Organ located in innermost part of ear

The semicircular canals are three semicircular interconnected tubes located in the innermost part of each ear, the inner ear. The three canals are the lateral, anterior and posterior semicircular canals. They are the part of the bony labyrinth, a periosteum-lined cavity on the petrous part of the temporal bone filled with perilymph. 

<span class="mw-page-title-main">Stewart platform</span> Type of parallel manipulator

A Stewart platform is a type of parallel manipulator that has six prismatic actuators, commonly hydraulic jacks or electric linear actuators, attached in pairs to three positions on the platform's baseplate, crossing over to three mounting points on a top plate. All 12 connections are made via universal joints. Devices placed on the top plate can be moved in the six degrees of freedom in which it is possible for a freely-suspended body to move: three linear movements x, y, z, and the three rotations.

Spatial disorientation is the inability to determine position or relative motion, commonly occurring during periods of challenging visibility, since vision is the dominant sense for orientation. The auditory system, vestibular system, and proprioceptive system collectively work to coordinate movement with balance, and can also create illusory nonvisual sensations, resulting in spatial disorientation in the absence of strong visual cues.

<span class="mw-page-title-main">Inclinometer</span> Instrument used to measure the inclination of a surface relative to local gravity

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance.

<span class="mw-page-title-main">Motion simulator</span> Type of mechanism

A motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom and three translational or linear degrees of freedom.

In psychophysics, sensory threshold is the weakest stimulus that an organism can sense. Unless otherwise indicated, it is usually defined as the weakest stimulus that can be detected half the time, for example, as indicated by a point on a probability curve. Methods have been developed to measure thresholds in any of the senses.

<span class="mw-page-title-main">Graveyard spiral</span> Spiral dive entered by a pilot due to spatial disorientation

In aviation, a graveyard spiral is a type of dangerous spiral dive entered into accidentally by a pilot who is not trained or not proficient in flying in instrument meteorological conditions (IMC). Other names for this phenomenon include suicide spiral, deadly spiral, death spiral and vicious spiral.

<span class="mw-page-title-main">Full flight simulator</span>

Full flight simulator (FFS) is a term used by national (civil) aviation authorities (NAA) for a high technical level of flight simulator. Such authorities include the Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA).

<span class="mw-page-title-main">Helmet-mounted display</span> Headworn device projecting imagery to the eyes

A helmet-mounted display (HMD) is a headworn device that uses displays and optics to project imagery and/or symbology to the eyes. It provides visual information to the user where head protection is required – most notably in military aircraft. The display-optics assembly can be attached to a helmet or integrated into the design of the helmet. An HMD provides the pilot with situation awareness, an enhanced image of the scene, and in military applications cue weapons systems, to the direction their head is pointing. Applications which allow cuing of weapon systems are referred to as helmet-mounted sight and display (HMSD) or helmet-mounted sights (HMS).

In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential. LRPs are recorded using electroencephalography (EEG) and have numerous applications in cognitive neuroscience.

<span class="mw-page-title-main">Inertial navigation system</span> Continuously computed dead reckoning

An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

Space neuroscience or astroneuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.

<span class="mw-page-title-main">Neuromechanics</span> Interdisciplinary field

Neuromechanics is an interdisciplinary field that combines biomechanics and neuroscience to understand how the nervous system interacts with the skeletal and muscular systems to enable animals to move. In a motor task, like reaching for an object, neural commands are sent to motor neurons to activate a set of muscles, called muscle synergies. Given which muscles are activated and how they are connected to the skeleton, there will be a corresponding and specific movement of the body. In addition to participating in reflexes, neuromechanical process may also be shaped through motor adaptation and learning.

<span class="mw-page-title-main">Full motion racing simulator</span>

A full motion racing simulator, sometimes called a full motion sim rig, is a motion simulator that is purposed for racing, and must provide motion simulation in all six degrees of freedom, as defined by the aviation simulator industry many decades ago. The six degrees of freedom coincide with Earth physics, and are commonly referred to as:

Daniel M. Merfeld is an American neuroengineer, neuroscientist, academic, author, and inventor. He is a professor of Otolaryngology at The Ohio State University, and serves as Senior Vestibular Scientist at the Naval Aerospace Medical Research Laboratory, which is part of the Naval Medical Research Unit Dayton.

References

  1. Brown, Yorke; Cardullo, Frank; Sinacori, John (1989-08-14). "Need-based evaluation of simulator force and motion cuing devices". American Institute of Aeronautics and Astronautics. doi:10.2514/6.1989-3272 . Retrieved 2023-07-24.{{cite journal}}: Cite journal requires |journal= (help)