Mental rotation

Last updated
Example problem based on Shepard & Metzlar's "Mental Rotation Task": are these two three-dimensional shapes identical when rotated? Mental rotation task (diagram) (cropped).jpg
Example problem based on Shepard & Metzlar's "Mental Rotation Task": are these two three-dimensional shapes identical when rotated?

Mental rotation is the ability to rotate mental representations of two-dimensional and three-dimensional objects as it is related to the visual representation of such rotation within the human mind. [1] There is a relationship between areas of the brain associated with perception and mental rotation. There could also be a relationship between the cognitive rate of spatial processing, general intelligence and mental rotation. [2] [3] [4]

Contents

Mental rotation can be described as the brain moving objects in order to help understand what they are and where they belong. Mental rotation has been studied to try to figure out how the mind recognizes objects in their environment. Researchers generally call such objects stimuli. Mental rotation is one cognitive function for the person to figure out what the altered object is.

Mental rotation can be separated into the following cognitive stages: [2]

  1. Create a mental image of an object from all directions (imagining where it continues straight vs. turns).
  2. Rotate the object mentally until a comparison can be made (orientating the stimulus to other figure).
  3. Make the comparison.
  4. Decide if the objects are the same or not.
  5. Report the decision (reaction time is recorded when a lever is pulled or a button is pressed).

Assessment

Originally developed in 1978 by Vandenberg and Kuse [5] based on the research by Shepard and Metzler (1971), [1] a Mental Rotation Test (MRT) consists of a participant comparing two 3D objects (or letters), often rotated in some axis, and states if they are the same image or if they are mirror images (enantiomorphs). [1] Commonly, the test will have pairs of images each rotated a specific number of degrees (e.g. 0°, 60°, 120° or 180°). A set number of pairs will be split between being the same image rotated, while others are mirrored. The researcher judges the participant on how accurately and rapidly they can distinguish between the mirrored and non-mirrored pairs. [6]

Notable research

Shepard and Metzler (1971)

Roger Shepard and Jacqueline Metzler (1971) were some of the first to research the phenomenon. [7] Their experiment specifically tested mental rotation on three-dimensional objects. Each subject was presented with multiple pairs of three-dimensional, asymmetrical lined or cubed objects. The experiment was designed to measure how long it would take each subject to determine whether the pair of objects were indeed the same object or two different objects. Their research showed that the reaction time for participants to decide if the pair of items matched or not was linearly proportional to the angle of rotation from the original position. That is, the more an object has been rotated from the original, the longer it takes an individual to determine if the two images are of the same object or enantiomorphs. [8]

Vandenberg and Kuse (1978)

In 1978, Steven G. Vandenberg and Allan R. Kuse developed the Mental Rotations Test (MRT) to assess mental rotation abilities that was based on Shepard and Metzler's (1971) original study. The Mental Rotations Test was constructed using India ink drawings. Each stimulus was a two-dimensional image of a three-dimensional object drawn by a computer. The image was then displayed on an oscilloscope. Each image was then shown at different orientations rotated around the vertical axis. The original test contained 20 items, demanding the comparison of four figures with a criterion figure, with two of them being correct. Following the basic ideas of Shepard and Metzler's experiment, this study found a significant difference in the mental rotation scores between men and women, with men performing better. Correlations with other measures showed strong association with tests of spatial visualization and no association with verbal ability. [9] [10]

Neuropsychology

In 2000, a study was conducted to find out which part of the brain is activated during mental rotation. Seven volunteers (four males and three females) between the ages of twenty-nine to sixty-six participated in this experiment. For the study, the subjects were shown eight characters 4 times each (twice in normal orientation and twice reversed) and the subjects had to decide if the character was in its normal configuration or if it was the mirror image. During this task, a PET scan was performed and revealed activation in the right posterior parietal lobe. [11]

Functional magnetic resonance imaging (fMRI)  studies of brain activation during mental rotation reveal consistent increased activation of the parietal lobe, specifically the inter-parietal sulcus, that is dependent on the difficulty of the task. In general, the larger the angle of rotation, the more brain activity associated with the task. This increased brain activation is accompanied by longer times to complete the rotation task and higher error rates. Researchers have argued that the increased brain activation, increased time, and increased error rates indicate that task difficulty is proportional to the angle of rotation. [12] [13]

A 2006 study observed the following brain areas to be activated during mental rotation as compared to baseline: bilateral medial temporal gyrus, left medial occipital gyrus, bilateral superior occipital gyrus, bilateral superior parietal lobe, and left inferior occipital gyrus during the rotation task. [14]

Development

A study from 2008 suggested that differences may occur early during development. The experiment was done on 3- to 4-month-old infants using a 2D mental rotation task. They used a preference apparatus that consists of observing during how much time the infant is looking at the stimulus. They started by familiarizing the participants with the number "1" and its rotations. Then they showed them a picture of a "1" rotated and its mirror image. It appears that gendered differences may appear early in development, as the study showed that males are more responsive to the mirror image. According to the study, this may mean that males and females process mental rotation differently even as infants. [15] Supporting the presence of such differences early in development, other studies have found that gendered differences in mental rotation tests were visible in all age groups, including young children. Interestingly, these differences emerged much later for other categories of spatial tests. [16]

In 2020, Advances in Child Development and Behavior published a review that examined mental rotation abilities during very early development. [17] The authors concluded that an ability to mentally rotate objects can be detected in infants as young as 3 months of age. Also, MR processes in infancy likely remain stable over time into adulthood. Additional variables that appeared to influence infants' MR performance include motor activity, stimulus complexity, hormone levels, and parental attitudes [18]

Factors that affect performance

Rotation in depth 90 degrees Clock rotated depth wise 90 degrees.png
Rotation in depth 90 degrees
Rotation in the picture plane 90 degrees Clock rotated in the picture plane 90 degrees.png
Rotation in the picture plane 90 degrees

Color

Physical objects that people imagine rotating in everyday life have many properties, such as textures, shapes, and colors. A study at the University of California Santa Barbara was conducted to specifically test the extent to which visual information, such as color, is represented during mental rotation. This study used several methods such as reaction time studies, verbal protocol analysis, and eye tracking. In the initial reaction time experiments, those with poor rotational ability were affected by the colors of the image, whereas those with good rotational ability were not. Overall, those with poor ability were faster and more accurate identifying images that were consistently colored. The verbal protocol analysis showed that the subjects with low spatial ability mentioned color in their mental rotation tasks more often than participants with high spatial ability. One thing that can be shown through this experiment is that those with higher rotational ability will be less likely to represent color in their mental rotation. Poor rotators will be more likely to represent color in their mental rotation using piecemeal strategies (Khooshabeh & Hegarty, 2008).

Athletic, musical, and artistic skills

Research on how athleticism and artistic ability affect mental rotation has been conducted. Pietsch, S., & Jansen, P. (2012) showed that people who were athletes or musicians had faster reaction times than people who were not. They tested this by splitting people from the age of 18 and higher into three groups. The groups consisted of music students, sports students, and education students. It was found that students who were focused on sports or music did much better than those who were education majors. Also, it was found that the male athletes and education majors in the experiment were faster than the respective females, but male and female musicians showed no significant difference in reaction time.

A 2007 study supported the results that musicians perform better on mental rotation tasks than non-musicians. In particular, orchestral musicians' MRT task performance exhibited aptitude levels significantly higher than the population baseline. [19]

Moreau, D., Clerc, et al. (2012) also investigated if athletes were more spatially aware than non-athletes. This experiment took undergraduate college students and tested them with the mental rotation test before any sport training, and then again afterward. The participants were trained in two different sports to see if this would help their spatial awareness. It was found that the participants did better on the mental rotation test after they had trained in the sports, than they did before the training. This experiment brought to the research that if people could find ways to train their mental rotation skills they could perform better in high context activities with greater ease.

Researchers studied the difference in mental rotation ability between gymnasts, handball, and soccer players with both in-depth and in-plane rotations. Results suggested that athletes were better at performing mental rotation tasks that were more closely related to their sport of expertise. [20]

There is a correlation in mental rotation and motor ability in children, and this connection is especially strong in boys ages 7–8. The study showed that there is considerable overlap between spatial reasoning and athletic ability, even among young children. [21]

A mental rotation test (MRT) was carried out on gymnasts, orienteers, runners, and non athletes. Results showed that non athletes were greatly outperformed by gymnasts and orienteers, but not runners. Gymnasts (egocentric athletes) did not outperform orienteers (allocentric athletes). [22] Egocentric indicates understanding the position of your body as it relates to objects in space, and allocentric indicates understanding the relation of multiple objects in space independently of the self-perspective.

A study investigated the effect of mental rotation on postural stability. Participants performed a MR (mental rotation) task involving either foot stimuli, hand stimuli, or non-body stimuli (a car) and then had to balance on one foot. The results suggested that MR tasks involving foot stimuli were more effective at improving balance than hand or car stimuli, even after 60 minutes. [23]

Contrary to what one might expect, previous studies examining whether artists are superior at mental rotation have been mixed, and a recent study substantiates the null findings. It has been theorized that artists are adept at recognizing, creating, and activating visual stimuli, but not necessarily at manipulating them. [24]

A 2018 study examined the effect of studying various subjects within higher education on mental rotation ability. [25] The researchers found that architecture students performed significantly better than art students, who performed significantly better than both psychology and business majors, with gender and other demographic differences accounted for. These findings make sense intuitively, given that architecture students are highly acquainted with manipulating the orientation of structures in space.

Sex

Following the Vandenberg and Kuse study, subsequent research attempted to assess the presence of gendered differences in mental rotation ability. For the first couple of decades immediately following the research, the topic was addressed in different meta-analyses with inconclusive results. However, Voyer et al. conducted a comprehensive review in 1995, which showed that gender differences were reliable and more pronounced in specific tasks, indicating that sex affects the processes underlying performance in spatial memory tests. Analogous to other types of spatial reasoning tasks, men tended to outperform women by a statistically significant margin [16] among the MR literature.

As mentioned above, many studies have shown that there is a difference between male and female performance in mental rotation tasks. To learn more about this difference, brain activation during a mental rotation task was studied. In 2012, a study [26] was done in which males and females were asked to execute a mental rotation task, and their brain activity was recorded with an fMRI. The researchers found a difference of brain activation: males presented a stronger activity in the area of the brain used in a mental rotation task.

Furthermore, sex-related differences in mental rotation abilities may reflect evolutionary differences. Men assumed the role of hunting and foraging, which necessitates a greater degree of visual-spatial processing than the child-rearing and domestic tasks which women performed. Biologically, males receive higher fetal exposure to androgens than females, and retain these relatively higher levels for life. This difference plays a significant role in human sexual dimorphism, and may be a causal factor in the differences observed regarding mental rotation. Interestingly, women with congenital adrenal hyperplasia (CAH), who are exposed to higher levels of fetal androgen than control women, tend to perform better on the MRT than women with normal amounts of fetal androgen exposure. [27] Additionally, the significant role of hormonal variation between the sexes was supported by a 2004 study, which revealed that testosterone (a principal androgen) level in young men was negatively correlated with the number of errors and response time in the MRT. [28] Therefore, higher levels of testosterone probably contribute to better performance.

Another study from 2015 was focused on women and their abilities in a mental rotation task and an emotion recognition task. In this experiment they induced a feeling or a situation in which women feel more powerful or less powerful. They were able to conclude that women in a situation of power are better in a mental rotation task (but less performant in an emotion recognition task) than other women. [29] Interestingly, the types of cognitive strategies that men and women typically employ may be a contributing factor. The literature has established that men generally prefer holistic strategies, whereas women prefer analytic-verbal strategies and focus on specific parts of the whole puzzle. Women tended to act more conservatively as well, sacrificing time to double-check the incorrect items more often than men. Consequently, women require more time to execute their technique when completing tasks like the MRT. In order to determine the extent of this variable's significance, Hirnstein et al. (2009) created a modified MRT in which the number of matching figures could vary between zero and four, which, compared to the original MRT, favored the strategy most often employed by women. The research found that gender differences declined somewhat, but men still outperformed women. [30]

Along the same lines, a 2021 study found intriguing results in an attempt to discern the mechanisms behind the established gender disparity. The researchers hypothesized that task characteristics, not only anatomical or social differences, could explain men's advantage in mental rotation. In particular, the objects to be rotated were changed from the typical geometric or spherical shapes to male or female stereotyped objects, such as a tractor and a stroller, respectively. The results revealed significant gender differences only when male-stereotyped objects were used as rotational material. When female-stereotyped rotational material was used, men and women performed equally. This finding may explain underlying causes behind the usual disparate outcomes, in that the male ability to do somewhat better on MRT tests probably stems from the evolutionary applicability of spatial reasoning. Objects that aren't relevant to historical male gender roles, and are consequently generally unfamiliar to men, are much more difficult for men to conceptualize spatially than more familiar shapes. [31] Likewise, other recent studies suggest that difference between Mental rotation cognition task are a consequence of procedure and artificiality of the stimuli. A 2017 study leveraged photographs and three-dimensional models, evaluating multiple approaches and stimuli. Results show that changing the stimuli can eliminate any male advantages found from the Vandenberg and Kuse test (1978). [32]

Studying differences between male and female brains can have interesting applications. For example, it could help in the understanding of the autism spectrum disorders. One of the theories concerning autism is the EMB (extreme male brain). This theory considers autistic people to have an "extreme male brain". In a study [33] from 2015, researchers confirmed that there is a difference between male and female in mental rotation task (by studying people without autism): males are more successful. Then they highlighted the fact that autistic people do not have this "male performance" in a mental rotation task. They conclude their study by "autistic people do not have an extreme version of a male cognitive profile as proposed by the EMB theory". [33]

Current and future research directions

Much of the current and future research directions pertain to expanding on what has been established by the literature and investigating underlying causes behind previous results. Future studies will consider additional factors that could influence MR ability, including demographics, various aptitudes, personality, rare/deviant psychological profiles, among others. Many current and future studies are and will be examining the ways that certain brain abnormalities, including many of those caused by traumatic injuries, affect one's ability to perform mental rotation. There is some evidence that what appears to be mental rotation in depth is actually a response to the properties of flat pictures. [34] [35]

There may be relationships between competent bodily movement and the speed with which individuals can perform mental rotation. Researchers found children who trained with mental rotation tasks had improved strategy skills after practicing. [36] People use many different strategies to complete tasks; psychologists will study participants who use specific cognitive skills to compare competency and reaction times. [37] Others will continue to examine the differences in competency of mental rotation based on the objects being rotated. [38] Participants' identification with the object could hinder or help their mental rotation abilities across gender and ages to support the earlier claim that males have faster reaction times. [26] [39] [40] Psychologists will continue to test similarities between mental rotation and physical rotation, examining the difference in reaction times and relevance to environmental implications. [41]

See also

Notes

  1. 1 2 3 Shepard, R. N.; Metzler, J. (19 February 1971). "Mental Rotation of Three-Dimensional Objects". Science. 171 (3972): 701–703. Bibcode:1971Sci...171..701S. CiteSeerX   10.1.1.610.4345 . doi:10.1126/science.171.3972.701. PMID   5540314. S2CID   16357397.
  2. 1 2 Johnson, A. Michael (December 1990). "Speed of Mental Rotation as a Function of Problem-Solving Strategies". Perceptual and Motor Skills. 71 (3): 803–806. doi:10.2466/pms.1990.71.3.803. PMID   2293182. S2CID   34521929.
  3. Jones, Bill; Anuza, Teresa (December 1982). "Effects of Sex, Handedness, Stimulus and Visual Field on 'Mental Rotation'". Cortex. 18 (4): 501–514. doi: 10.1016/s0010-9452(82)80049-x . PMID   7166038. S2CID   4479407.
  4. Hertzog, Christopher; Rypma, Bart (February 1991). "Age differences in components of mental-rotation task performance". Bulletin of the Psychonomic Society. 29 (2): 209–212. doi: 10.3758/BF03335237 .
  5. Vandenberg, S., & Kuse, A. (1978). Mental Rotation, a Group Test of Three-Dimensional Spatial Visualization. Perceptual and Motor Skills, 47, 599-604. doi : 10.2466/pms.1978.47.2.599
  6. Caissie, A. F.; Vigneau, F.; Bors, D. A. (2009). "What does the Mental Rotation Test Measure? An Analysis of Item Difficulty and Item Characteristics" (PDF). The Open Psychology Journal. 2 (1): 94–102. doi: 10.2174/1874350100902010094 .
  7. Shepard, R. N., & Metzler, J., "Mental rotation: Effects of Dimensionality of Objects and Type of Task", Journal of Experimental Psychology: Human Perception and Performance , Vol 14, Feb 1988, pp. 3-11.
  8. Shepard, R. N.; Metzler, J. (1971). "Mental Rotation of Three-Dimensional Objects" (PDF). Science. 171 (3972): 701–703. Bibcode:1971Sci...171..701S. CiteSeerX   10.1.1.610.4345 . doi:10.1126/science.171.3972.701. JSTOR   1731476. PMID   5540314. S2CID   16357397.
  9. Vandenberg, Steven (1978). "Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization". Perceptual and Motor Skills. 47 (2): 599–604. doi:10.2466/pms.1978.47.2.599. PMID   724398. S2CID   32296116.
  10. Peters, Michael (2005-03-01). "Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems". Brain and Cognition. 57 (2): 176–184. doi:10.1016/j.bandc.2004.08.052. PMID   15708213. S2CID   24172762.
  11. Harris, Irina M.; Egan, Gary F.; Sonkkila, Cynon; Tochon-Danguy, Henri J.; Paxinos, George; Watson, John D. G. (January 2000). "Selective right parietal lobe activation during mental rotation". Brain. 123 (1): 65–73. doi: 10.1093/brain/123.1.65 . PMID   10611121.
  12. Prather, S.C; Sathian, K. (2002). "Mental rotation of tactile stimuli". Cognitive Brain Research. 14 (1): 91–98. doi:10.1016/S0926-6410(02)00063-0. PMID   12063132.
  13. Gogos, Andrea; Gavrilescu, Maria; Davison, Sonia; Searle, Karissa; Adams, Jenny; Rossell, Susan L.; Bell, Robin; Davis, Susan R.; Egan, Gary F. (2010-01-01). "Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: An fMRI study". Neuropsychologia. 48 (2): 529–535. doi:10.1016/j.neuropsychologia.2009.10.013. PMID   19850055. S2CID   207235806.
  14. Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2006). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research, 169(1), 1–14. doi : 10.1007/s00221-005-0118-7
  15. Quinn, Paul C.; Liben, Lynn S. (1 November 2008). "A Sex Difference in Mental Rotation in Young Infants". Psychological Science. 19 (11): 1067–1070. CiteSeerX   10.1.1.1013.7396 . doi:10.1111/j.1467-9280.2008.02201.x. PMID   19076474. S2CID   7734508.
  16. 1 2 Cimadevilla, J. M., Piccardi, L., Kranz, G. S. Savic, I. (2020). Spatial Skills. Handbook of Clinical Psychology, 175, 65–79. Retrieved 2022, doi : 10.1016/B978-0-444-64123-6.00006-0.
  17. Moore, D. S. & Johnson, S. P. (2020). The development of mental rotation ability across the first year after birth. In Advances in Child Development and Behavior (Vol. 58, pp. 1–33). essay, Science Direct.
  18. Constantinescu, Miha.; Moore, David S.; Johnson, Scott P.; Hines, Melissa (1 July 2018). "Early contributions to infants' mental rotation abilities" (PDF). Developmental Science. 21 (4): e12613. doi:10.1111/desc.12613. PMID   29143410.
  19. Sluming, V., Brooks, J., Howard, M., Downes, J. J., & Roberts, N. (2007). Broca's area supports enhanced visuospatial cognition in orchestral musicians. The Journal of Neuroscience, 27(14), 3799–3806. doi : 10.1523/JNEUROSCI.0147-07.2007
  20. Habacha, Hamdi; Lejeune-Poutrain, Laure; Margas, Nicolas; Molinaro, Corinne (October 2014). "Effects of the axis of rotation and primordially solicited limb of high level athletes in a mental rotation task". Human Movement Science. 37: 58–68. doi:10.1016/j.humov.2014.06.002. PMID   25064695.
  21. Jansen, Petra; Kellner, Jan (2015). "The role of rotational hand movements and general motor ability in children's mental rotation performance". Frontiers in Psychology. 6: 984. doi: 10.3389/fpsyg.2015.00984 . PMC   4503890 . PMID   26236262.
  22. Schmidt, Mirko; Egger, Fabienne; Kieliger, Mario; Rubeli, Benjamin; Schüler, Julia (2016). "Gymnasts and orienteers display better mental rotation performance than nonathletes" (PDF). Journal of Individual Differences. 37: 1–7. doi:10.1027/1614-0001/a000180.
  23. Kawasaki, Tsubasa; Higuchi, Takahiro (3 July 2016). "Improvement of Postural Stability During Quiet Standing Obtained After Mental Rotation of Foot Stimuli". Journal of Motor Behavior. 48 (4): 357–364. doi:10.1080/00222895.2015.1100978. PMID   27162153. S2CID   205437812.
  24. Drake, J. E., Simmons, S., Rouser, S., Poloes, I., & Winner, E. (2021). Artists excel on image activation but not image manipulation tasks. Empirical Studies of the Arts, 39(1), 3–16. doi : 10.1177/0276237419868941
  25. Campos-Juanatey, D., Pérez-Fabello, M. J., & Campos, A. (2018). Differences in image rotation between undergraduates from different university degrees. Imagination, Cognition and Personality, 38(2), 173–185.
  26. 1 2 Semrud-Clikeman, Margaret; Fine, Jodene Goldenring; Bledsoe, Jesse; Zhu, David C. (26 January 2012). "Gender Differences in Brain Activation on a Mental Rotation Task". International Journal of Neuroscience. 122 (10): 590–597. doi:10.3109/00207454.2012.693999. PMID   22651549. S2CID   20294308.
  27. Plant, Tony M.; Zeleznik, Anthony J.; Forger, Nancy G.; de Vries, Geert J.; Breedlove, S. Marc (2015). "47". Knobil and Neill's Physiology of Reproduction (Fourth Edition). United States: Academic Press. pp. 2109–2155. ISBN   978-0-12-397175-3
  28. Hooven, C. K., Chabris, C. F., Ellison, P. T., & Kosslyn, S. M. (2004). The relationship of male testosterone to components of mental rotation. Neuropsychologia, 42(6), 782-790.
  29. Nissan, Tali; Shapira, Oren; Liberman, Nira (October 2015). "Effects of Power on Mental Rotation and Emotion Recognition in Women". Personality and Social Psychology Bulletin. 41 (10): 1425–1437. doi: 10.1177/0146167215598748 . PMID   26231592. S2CID   23539538.
  30. Hirnstein, M., Bayer, U., & Hausmann, M. (2009). Sex-specific response strategies in mental rotation. Learning and Individual Differences, 19(2), 225-228.
  31. Rahe, M., Ruthsatz, V., & Quaiser-Pohl, C. (2021). Influence of the stimulus material on gender differences in a mental-rotation test. Psychological Research, 85(8), 2892-2899.
  32. Fisher, Maryanne L.; Meredith, Tami; Gray, Melissa (2017-09-07). "Sex Differences in Mental Rotation Are a Consequence of Procedure and Artificiality of Stimuli". Evolutionary Psychological Science. 4: 124–133. doi:10.1007/s40806-017-0120-x. S2CID   148788811 . Retrieved 2020-07-10.
  33. 1 2 Zapf, Alexandra C.; Glindemann, Liv A.; Vogeley, Kai; Falter, Christine M. (17 April 2015). "Sex Differences in Mental Rotation and How They Add to the Understanding of Autism". PLOS ONE. 10 (4): e0124628. Bibcode:2015PLoSO..1024628Z. doi: 10.1371/journal.pone.0124628 . PMC   4401579 . PMID   25884501.
  34. Niall(2020)
  35. Niall (2023)
  36. Meneghetti, Chiara; Cardillo, Ramona; Mammarella, Irene C.; Caviola, Sara; Borella, Erika (March 2017). "The role of practice and strategy in mental rotation training: transfer and maintenance effects". Psychological Research. 81 (2): 415–431. doi:10.1007/s00426-016-0749-2. PMID   26861758. S2CID   36170895.
  37. Provost, Alexander; Johnson, Blake; Karayanidis, Frini; Brown, Scott D.; Heathcote, Andrew (September 2013). "Two Routes to Expertise in Mental Rotation". Cognitive Science. 37 (7): 1321–1342. doi: 10.1111/cogs.12042 . PMID   23676091.
  38. Jansen, Petra; Quaiser-Pohl, Claudia; Neuburger, Sarah; Ruthsatz, Vera (June 2015). "Factors Influencing Mental-Rotation with Action-based Gender-Stereotyped Objects—The Role of Fine Motor Skills". Current Psychology. 34 (2): 466–476. doi:10.1007/s12144-014-9269-7. S2CID   143720932.
  39. Richardson, John T. E. (1991-01-01). "Chapter 19 Gender differences in imagery, cognition, and memory". In Denis, Robert H. Logie and Michel (ed.). Advances in Psychology. Mental Images in Human Cognition. Vol. 80. North-Holland. pp. 271–303. doi:10.1016/s0166-4115(08)60519-1. ISBN   978-0-444-88894-5.
  40. Burnett, Sarah A. (1986). "Sex-related differences in spatial ability: Are they trivial?". American Psychologist. 41 (9): 1012–1014. doi:10.1037/0003-066x.41.9.1012.
  41. Gardony, Aaron L.; Taylor, Holly A.; Brunyé, Tad T. (February 2014). "What Does Physical Rotation Reveal About Mental Rotation?". Psychological Science. 25 (2): 605–612. doi:10.1177/0956797613503174. PMID   24311475. S2CID   16285194.

Related Research Articles

<span class="mw-page-title-main">Attention</span> Psychological focus, perception and prioritising discrete information

Attention or focus, is the concentration of awareness on some phenomenon to the exclusion of other stimuli. It is the selective concentration on discrete information, either subjectively or objectively. William James (1890) wrote that "Attention is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence." Attention has also been described as the allocation of limited cognitive processing resources. Attention is manifested by an attentional bottleneck, in terms of the amount of data the brain can process each second; for example, in human vision, less than 1% of the visual input data stream of 1MByte/sec can enter the bottleneck, leading to inattentional blindness.

In the philosophy of mind, neuroscience, and cognitive science, a mental image is an experience that, on most occasions, significantly resembles the experience of "perceiving" some object, event, or scene but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric, and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

<span class="mw-page-title-main">Hemispatial neglect</span> Asymmetrically-impaired spatial awareness due to a brain hemisphere being damaged

Hemispatial neglect is a neuropsychological condition in which, after damage to one hemisphere of the brain, a deficit in attention and awareness towards the side of space opposite brain damage is observed. It is defined by the inability of a person to process and perceive stimuli towards the contralesional side of the body or environment. Hemispatial neglect is very commonly contralateral to the damaged hemisphere, but instances of ipsilesional neglect have been reported.

<span class="mw-page-title-main">Stroop effect</span> Effect of psychological interference on reaction time

In psychology, the Stroop effect is the delay in reaction time between congruent and incongruent stimuli.

<span class="mw-page-title-main">Visual memory</span> Ability to process visual and spatial information

Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory.

Sex differences in psychology are differences in the mental functions and behaviors of the sexes and are due to a complex interplay of biological, developmental, and cultural factors. Differences have been found in a variety of fields such as mental health, cognitive abilities, personality, emotion, sexuality, friendship, and tendency towards aggression. Such variation may be innate, learned, or both. Modern research attempts to distinguish between these causes and to analyze any ethical concerns raised. Since behavior is a result of interactions between nature and nurture, researchers are interested in investigating how biology and environment interact to produce such differences, although this is often not possible.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. More analysis produce more elaborate and stronger memory than lower levels of processing. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word. Phonemic processing includes remembering the word by the way it sounds. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar or has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

<span class="mw-page-title-main">Roger Shepard</span> American psychologist (1929–2020)

Roger Newland Shepard was an American cognitive scientist and author of the "universal law of generalization" (1987). He was considered a father of research on spatial relations. He studied mental rotation, and was an inventor of non-metric multidimensional scaling, a method for representing certain kinds of statistical data in a graphical form that can be comprehended by humans. The optical illusion called Shepard tables and the auditory illusion called Shepard tones are named for him.

Visual search is a type of perceptual task requiring attention that typically involves an active scan of the visual environment for a particular object or feature among other objects or features. Visual search can take place with or without eye movements. The ability to consciously locate an object or target amongst a complex array of stimuli has been extensively studied over the past 40 years. Practical examples of using visual search can be seen in everyday life, such as when one is picking out a product on a supermarket shelf, when animals are searching for food among piles of leaves, when trying to find a friend in a large crowd of people, or simply when playing visual search games such as Where's Wally?

<span class="mw-page-title-main">Mental chronometry</span> Study of processing speed on cognitive tasks

Mental chronometry is the scientific study of processing speed or reaction time on cognitive tasks to infer the content, duration, and temporal sequencing of mental operations. Reaction time is measured by the elapsed time between stimulus onset and an individual's response on elementary cognitive tasks (ECTs), which are relatively simple perceptual-motor tasks typically administered in a laboratory setting. Mental chronometry is one of the core methodological paradigms of human experimental, cognitive, and differential psychology, but is also commonly analyzed in psychophysiology, cognitive neuroscience, and behavioral neuroscience to help elucidate the biological mechanisms underlying perception, attention, and decision-making in humans and other species.

Spatial visualization ability or visual-spatial ability is the ability to mentally manipulate 2-dimensional and 3-dimensional figures. It is typically measured with simple cognitive tests and is predictive of user performance with some kinds of user interfaces.

Left–right confusion (LRC) is the inability to accurately differentiate between left and right directions. Conversely, Left–right discrimination (LRD) refers to a person's ability to differentiate between left and right. LRC is reported by approximately 15% of the population according to the 2020 research by Van der Ham and her colleagues. People who have LRC can typically perform daily navigational tasks, such as driving according to road signs or following a map, but may have difficulty performing actions that require a precise understanding of directional commands, such as ballroom dancing.

The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

In cognitive psychology, spatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals, including humans, behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines work together to understand spatial cognition in different species, especially in humans. Thereby, spatial cognition studies also have helped to link cognitive psychology and neuroscience. Scientists in both fields work together to figure out what role spatial cognition plays in the brain as well as to determine the surrounding neurobiological infrastructure.

<span class="mw-page-title-main">Attentional control</span> Individuals capacity to choose what they pay attention to and what they ignore

Attentional control, colloquially referred to as concentration, refers to an individual's capacity to choose what they pay attention to and what they ignore. It is also known as endogenous attention or executive attention. In lay terms, attentional control can be described as an individual's ability to concentrate. Primarily mediated by the frontal areas of the brain including the anterior cingulate cortex, attentional control and attentional shifting are thought to be closely related to other executive functions such as working memory.

<span class="mw-page-title-main">Neuroscience of sex differences</span> Characteristics of the brain that differentiate the male brain and the female brain

The neuroscience of sex differences is the study of characteristics that separate brains of different sexes. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan. A 2021 meta-synthesis led by Lise Eliot found that sex accounted for 1% of the brain's structure or laterality, finding large group-level differences only in total brain volume. A subsequent 2021 led by Camille Michèle Williams contradicted Eliot's conclusions, finding that sex differences in total brain volume are not accounted for merely by sex differences in height and weight, and that once global brain size is taken into account, there remain numerous regional sex differences in both directions. A 2022 follow-up meta-analysis led by Alex DeCasien analyzed the studies from both Eliot and Williams, concluding that "The human brain shows highly reproducible sex differences in regional brain anatomy above and beyond sex differences in overall brain size" and that these differences are of a "small-moderate effect size." A review from 2006 and a meta-analysis from 2014 found that some evidence from brain morphology and function studies indicates that male and female brains cannot always be assumed to be identical from either a structural or functional perspective, and some brain structures are sexually dimorphic.

Sex differences in human intelligence have long been a topic of debate among researchers and scholars. It is now recognized that there are no significant sex differences in average IQ, though particular subtypes of intelligence vary somewhat between sexes.

Sex differences in cognition are widely studied in the current scientific literature. Biological and genetic differences in combination with environment and culture have resulted in the cognitive differences among males and females. Among biological factors, hormones such as testosterone and estrogen may play some role mediating these differences. Among differences of diverse mental and cognitive abilities, the largest or most well known are those relating to spatial abilities, social cognition and verbal skills and abilities.

<span class="mw-page-title-main">Spatial ability</span> Capacity to understand 3D relationships

Spatial ability or visuo-spatial ability is the capacity to understand, reason, and remember the visual and spatial relations among objects or space.

References