Field of view in video games

Last updated

A field of view. FOVgames.jpg
A field of view.

In first person video games, the field of view or field of vision (abbreviated FOV) is the extent of the observable game world that is seen on the display at any given moment. It is typically measured as an angle, although whether this angle is the horizontal, vertical, or diagonal component of the field of view varies from game to game.

Contents

The FOV in a video game may change depending on the aspect ratio of the rendering resolution. In computer games and modern game consoles the FOV normally increases with a wider aspect ratio of the rendering resolution. [1]

Field of view calculations

90 degrees FOV in a video game FOV in video games.svg
90 degrees FOV in a video game

The field of view is usually given as an angle for the horizontal or vertical component of the FOV. A larger angle indicates a larger field of view. However, depending on the FOV scaling method used by the game, it may only affect the horizontal or the vertical component of the field of view.

The horizontal and vertical FOV are calculated from the following equations: [2]

where r is the aspect ratio, w and h are the width and height, and H and V are the horizontal and vertical FOV.

The different values for horizontal and vertical FOV may lead to confusion because the games often just mention FOV and not whether they mean the horizontal or vertical FOV.

Choice of field of view

Including peripheral vision, the visual field of the average person is approximately 170-180 degrees. Console games are usually played on a TV at a large distance from the viewer, while PC games are usually played on computer monitors close to the viewer. Therefore, a narrow FOV of around 60 degrees is used for console games as the screen subtends a small part of the viewer's visual field, and a larger FOV of 90 to 100 degrees is usually set for PC games as the screen occupies a larger amount of the viewer's vision.

Narrowing the field of view can be a technique used to improve performance, as it can allow you to have to render less objects through the common optimisation technique of Viewing-frustum culling.

Many PC games that are released after 2000 are ported from consoles, or developed for both console and PC platforms. Ideally, the developer will set a wider FOV in the PC release, or offer a setting to change the FOV to the player's preference. However, in many cases the narrow FOV of the console release is retained in the PC version. This results in an uncomfortable sensation likened to viewing the scene through binoculars, and may lead to disorientation, dizziness, or nausea. [3] [4] [5]

Ratio1080p resolutioncommon nameVideo format
32:271280 × 1080p DVCPRO HD
4:31440 × 1080p
16:101728 × 1080p
16:91920 × 1080pWidescreen
2:12160 × 1080p18:9 Univisium
64:272560 × 1080pUltra-Widescreen Cinemascope / Anamorphic
32:93840 × 1080pSuper Ultra-Widescreen Ultra-Widescreen 3.6

Field of view scaling methods

The terms Hor+, static (previously anamorphic), pixel-based, Vert- and stretch are widely used in gaming discussions to describe how different video games change field of view dependent on the aspect ratio of the rendering resolution. The terms were originally coined by members of the Widescreen Gaming Forum. [6]

Field of view (FOV) in 16:9 video game with Hor+ scaling at 16:9. Hor169.jpg
Field of view (FOV) in 16:9 video game with Hor+ scaling at 16:9.
FOV in 16:9 video game with Hor+ scaling at 16:10 resolution. Hor1610.jpg
FOV in 16:9 video game with Hor+ scaling at 16:10 resolution.
FOV in 16:9 video game with Hor+ scaling at 4:3 resolution. Hor43.jpg
FOV in 16:9 video game with Hor+ scaling at 4:3 resolution.
FOV in 16:9 video game with static scaling at 16:9. Hor169.jpg
FOV in 16:9 video game with static scaling at 16:9.
FOV in 16:9 video game with static scaling at 16:10. Ana1610.jpg
FOV in 16:9 video game with static scaling at 16:10.
FOV in 16:9 video game with static scaling at 4:3. Anam43.jpg
FOV in 16:9 video game with static scaling at 4:3.

Field of view as an effect

Temporary changes to the field of view can sometimes be used as a special effect in video games. Reducing the field of view is commonly used to convey focus, whereas widening it may increase perceived movement speed or indicate lack of control.

See also

Related Research Articles

<span class="mw-page-title-main">Standard-definition television</span> Digital television with a similar definition to legacy analog systems

Standard-definition television is a television system that uses a resolution that is not considered to be either high or enhanced definition. "Standard" refers to offering a similar resolution to the analog broadcast systems used when it was introduced.

<span class="mw-page-title-main">Field of view</span> Extent of the observable world seen at any given moment

The field of view (FOV) is the angular extent of the observable world that is seen at any given moment. In the case of optical instruments or sensors, it is a solid angle through which a detector is sensitive to electromagnetic radiation. It is further relevant in photography.

<span class="mw-page-title-main">Dot pitch</span> Distance between RGB dots (sub-pixels) on a display

Dot pitch is a specification for a computer display, computer printer, image scanner, or other pixel-based devices that describe the distance, for example, between dots (sub-pixels) on a display screen. In the case of an RGB color display, the derived unit of pixel pitch is a measure of the size of a triad plus the distance between triads.

Anamorphic widescreen is a process by which a comparatively wide widescreen image is horizontally compressed to fit into a storage medium with a narrower aspect ratio, reducing the horizontal resolution of the image while keeping its full original vertical resolution. Compatible play-back equipment can then expand the horizontal dimension to show the original widescreen image. This is typically used to allow one to store widescreen images on a medium that was originally intended for a narrower ratio, while using as much of the frame – and therefore recording as much detail – as possible.

<span class="mw-page-title-main">Display resolution</span> Number of distinct pixels in each dimension that can be displayed

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

Negative pulldown is the manner in which an image is exposed on a film stock, described by the number of film perforations spanned by an individual frame. It can also describe whether the image captured on the negative is oriented horizontally or vertically. Changing the number of exposed perforations allows a cinematographer to change both the aspect ratio of the image and the size of the area on the film stock that the image occupies.

High-definition video is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical scan lines or 576 vertical lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal, by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

<span class="mw-page-title-main">1080p</span> Video mode

1080p is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen vertically; the p stands for progressive scan, i.e. non-interlaced. The term usually assumes a widescreen aspect ratio of 16:9, implying a resolution of 2.1 megapixels. It is often marketed as Full HD or FHD, to contrast 1080p with 720p resolution screens. Although 1080p is sometimes informally referred to as 2K, these terms reflect two distinct technical standards, with differences including resolution and aspect ratio.

<span class="mw-page-title-main">Page orientation</span> Orientation of a page designed for viewing

Page orientation is the way in which a rectangular page is oriented for normal viewing. The two most common types of orientation are portrait and landscape. The term "portrait orientation" comes from visual art terminology and describes the dimensions used to capture a person's face and upper body in a picture; in such images, the height of the display area is greater than the width. The term "landscape orientation" also reflects visual art terminology, where pictures with more width than height are needed to fully capture the horizon within an artist's view.

<span class="mw-page-title-main">Pixel aspect ratio</span> Proportion between the width and the height of a pixel

A Pixel aspect ratio is a mathematical ratio that describes how the width of a pixel in a digital image compared to the height of that pixel.

Widescreen televisions provide several modes for displaying video from 4:3 sources. These modes may be selected manually from a remote control, or automatically if an Active Format Descriptor is available.

1440p is a family of video display resolutions that have a vertical resolution of 1440 pixels. The p stands for progressive scan, i.e. non-interlaced. The 1440 pixel vertical resolution is double the vertical resolution of 720p, and one-third more than 1080p. QHD or WQHD is the designation for a commonly used display resolution of 2560 × 1440 pixels in a 16:9 aspect ratio. As a graphics display resolution between 1080p and 4K, Quad HD is regularly used in smartphone displays, and for computer and console gaming.

<span class="mw-page-title-main">Windowbox (filmmaking)</span> The often undesirable combination of letterboxing and pillarboxing

Windowboxing in the display of film or video occurs when the aspect ratio of the media is such that the letterbox effect and pillarbox effect occur simultaneously. Sometimes, by accident or design, a standard ratio image is presented in the central portion of a letterbox picture, resulting in a black border all around. It is generally disliked because it wastes much screen space and reduces the resolution of the original image. It can occur when a 16:9 film is set to 4:3 (letterbox), but then shown on a 16:9 TV or other output device. It can also occur in the opposite direction. Few films have been released with this aspect ratio—one example is The Crocodile Hunter: Collision Course, which had numerous scenes with Steve & Terri Irwin using widescreen pillar boxing.

The technology of television has evolved since its early days using a mechanical system invented by Paul Gottlieb Nipkow in 1884. Every television system works on the scanning principle first implemented in the rotating disk scanner of Nipkow. This turns a two-dimensional image into a time series of signals that represent the brightness and color of each resolvable element of the picture. By repeating a two-dimensional image quickly enough, the impression of motion can be transmitted as well. For the receiving apparatus to reconstruct the image, synchronization information is included in the signal to allow proper placement of each line within the image and to identify when a complete image has been transmitted and a new image is to follow.

The display aspect ratio (or DAR) is the aspect ratio of a display device and so the proportional relationship between the physical width and the height of the display. It is expressed as two numbers separated by a colon (x:y), where x corresponds to the width and y to the height. Common aspect ratios for displays, past and present, include 5:4, 4:3, 16:10, and 16:9.

"21:9" is a consumer electronics (CE) marketing term to describe the ultrawide aspect ratio of 64:27, designed to show films recorded in CinemaScope and equivalent modern anamorphic formats. The main benefit of this screen aspect ratio is a constant display height when displaying other content with a lesser aspect ratio.

<span class="mw-page-title-main">Graphics display resolution</span> Width and height of an electronic visual display device, such as a computer monitor, in pixels

The graphics display resolution is the width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized and typically given a name and an initialism which is descriptive of its dimensions. A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.

The aspect ratio of an image is the ratio of its width to its height, and is expressed with two numbers separated by a colon, such as 16:9, sixteen-to-nine. For the x:y aspect ratio, the image is x units wide and y units high. Common aspect ratios are 1.85:1 and 2.39:1 in cinematography, 4:3 and 16:9 in television photography, and 3:2 in still photography.

<span class="mw-page-title-main">Ultrawide formats</span> Photo and video display formats

Ultrawide formats refers to photos, videos, and displays with aspect ratios greater than 2. There were multiple moves in history towards wider formats, including one by Disney, with some of them being more successful than others.

References

  1. Master Games List http://www.wsgf.org/mgl
  2. "Projection Transform (Direct3D 9)". Microsoft. 2012-07-20. Retrieved 2012-08-12.
  3. The Escapist Magazine, The Darkness II's FOV Issue Getting Patched, published 2012-02-10, read 2014-07-27 http://www.escapistmagazine.com/news/view/115772-The-Darkness-IIs-FOV-Issue-Getting-Patched
  4. FZD School - Information videos - EPISODE 29 FOV in Games part1 and part2, Youtube
  5. Why good FOV options are crucial to PC games, 24 May 2013 by Peter Parrish, IncGamers, http://www.incgamers.com/2013/05/why-good-fov-options-are-crucial-to-pc-games
  6. Widescreen Gaming FAQ: Screen Change
  7. Widescreen Gaming Forum http://www.wsgf.org/category/screen-change/hor
  8. Example Half-Life 2 http://www.wsgf.org/dr/half-life-2
  9. Steam hardware survey http://store.steampowered.com/hwsurvey
  10. Static (previously: anamorphic) https://www.wsgf.org/article/anamorphic-out-static-aspect http://www.wsgf.org/category/screen-change/anamorphic
  11. Pixel-Based http://www.wsgf.org/category/screen-change/pixel-based
  12. Vert- http://www.wsgf.org/category/screen-change/vert
  13. Stretch, http://www.wsgf.org/category/screen-change/stretch