Airsickness

Last updated
Airsickness
Specialty Emergency medicine

Airsickness is a specific form of motion sickness which is induced by air travel [1] and is considered a normal response in healthy individuals. Airsickness occurs when the central nervous system receives conflicting messages from the body (including the inner ear, eyes and muscles) affecting balance and equilibrium. Whereas commercial airline passengers may simply feel poorly, the effect of airsickness on military aircrew may lead to a decrement in performance and adversely affect the mission. [2]

Contents

The inner ear is particularly important in the maintenance of balance and equilibrium because it contains sensors for both angular (rotational) and linear motion. Airsickness is usually a combination of spatial disorientation, nausea and vomiting. [3]

Signs and symptoms

Common symptoms of airsickness include:

Nausea, vomiting, vertigo, loss of appetite, cold sweating, skin pallor, difficulty concentrating, confusion, drowsiness, headache, and increased fatigue. [1] Severe airsickness may cause a person to become completely incapacitated. [1] [3]

Risk factors

The following factors increase some people's susceptibility to airsickness:

Prevention

Travelers who are susceptible to motion sickness can minimize symptoms by:[ citation needed ]

Treatment

Medication

Medications that may alleviate the symptoms of airsickness [1] include:

Pilots who are susceptible to airsickness are usually advised not to take anti-motion sickness medications (prescription or over-the-counter). [1] [3] These medications can make one drowsy or affect brain functions in other ways.

Non-medication based

A method to increase pilot resistance to airsickness consists of repetitive exposure to the flying conditions that initially resulted in airsickness. In other words, repeated exposure to the flight environment decreases an individual's susceptibility to subsequent airsickness. [1] The US Air Force and US Navy have an Air Sickness Management Program and use a device called a Barany chair to desensitize trainees over 3 days. This combined with progressive relaxation (diaphragmatic breathing and muscle tensing) yields a high success rate. [7] [8] The Italian Air Force also uses a similar spinning chair and psychologic relaxation techniques which yields an 82% long-term success rate, over a 10-day training period. [9]

Several devices have been introduced that are intended to reduce motion sickness through stimulation of various body parts (usually the wrist). [10]

Alternative medicine

Alternative treatments include ginger and acupuncture, with variable effectiveness. [11] [12] [13] [14] .

Understanding Airsickness

See also

Related Research Articles

<span class="mw-page-title-main">Motion sickness</span> Nausea caused by motion or perceived motion

Motion sickness occurs due to a difference between actual and expected motion. Symptoms commonly include nausea, vomiting, cold sweat, headache, dizziness, tiredness, loss of appetite, and increased salivation. Complications may rarely include dehydration, electrolyte problems, or a lower esophageal tear.

<span class="mw-page-title-main">Altitude sickness</span> Medical condition due to rapid exposure to low oxygen at high altitude

Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. People's bodies can respond to high altitude in different ways. Symptoms of altitude sickness may include headaches, vomiting, tiredness, confusion, trouble sleeping, and dizziness. Acute mountain sickness can progress to high-altitude pulmonary edema (HAPE) with associated shortness of breath or high-altitude cerebral edema (HACE) with associated confusion. Chronic mountain sickness may occur after long-term exposure to high altitude.

Mal de debarquement syndrome is a neurological condition usually occurring after a cruise, aircraft flight, or other sustained motion event. The phrase mal de débarquement is French and translates to "illness of disembarkment".

<span class="mw-page-title-main">Acrophobia</span> Extreme fear of heights

Acrophobia, also known as hypsophobia, is an extreme or irrational fear or phobia of heights, especially when one is not particularly high up. It belongs to a category of specific phobias, called space and motion discomfort, that share similar causes and options for treatment.

<span class="mw-page-title-main">Space adaptation syndrome</span> Condition caused by weightlessness

Space adaptation syndrome (SAS) or space sickness is a condition experienced by as many as half of all space travelers during their adaptation to weightlessness once in orbit. It is the opposite of terrestrial motion sickness since it occurs when the environment and the person appear visually to be in motion relative to one another even though there is no corresponding sensation of bodily movement originating from the vestibular system.

<span class="mw-page-title-main">High-altitude pulmonary edema</span> Human disease

High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above 2,500 meters (8,200 ft). HAPE is a severe presentation of altitude sickness. Cases have also been reported between 1,500–2,500 metres or 4,900–8,200 feet in people who are at a higher risk or are more vulnerable to the effects of high altitude.

<span class="mw-page-title-main">Aerosinusitis</span> Barotrauma of the sinuses

Aerosinusitis, also called barosinusitis, sinus squeeze or sinus barotrauma is a painful inflammation and sometimes bleeding of the membrane of the paranasal sinus cavities, normally the frontal sinus. It is caused by a difference in air pressures inside and outside the cavities.

Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.

<span class="mw-page-title-main">Vertigo</span> Type of dizziness where a person has the sensation of moving or surrounding objects moving

Vertigo is a condition in which a person has the sensation that they are moving, or that objects around them are moving, when they are not. Often it feels like a spinning or swaying movement. It may be associated with nausea, vomiting, perspiration, or difficulties walking. It is typically worse when the head is moved. Vertigo is the most common type of dizziness.

<span class="mw-page-title-main">Cinnarizine</span> Antihistamine and calcium channel blocker medication

Cinnarizine is an antihistamine and calcium channel blocker of the diphenylmethylpiperazine group. It is prescribed for nausea and vomiting due to motion sickness or other sources such as chemotherapy, vertigo, or Ménière's disease. Cinnarizine is one of the leading causes of drug-induced parkinsonism.

The sopite syndrome is a neurological disorder that relates symptoms of fatigue, drowsiness, and mood changes to prolonged periods of motion. The sopite syndrome has been attributed to motion-induced drowsiness such as that experienced by a baby when rocked. Researchers Ashton Graybiel and James Knepton at the US Naval Aerospace Medical Research Laboratory first used the term "the sopite syndrome" in 1976, to refer to the sometimes sole manifestation of motion sickness, though other researchers have referred to it as "Sopite syndrome."

<span class="mw-page-title-main">Nausea</span> Medical symptom or condition

Nausea is a diffuse sensation of unease and discomfort, sometimes perceived as an urge to vomit. It can be a debilitating symptom if prolonged and has been described as placing discomfort on the chest, abdomen, or back of the throat.

Vestibular migraine (VM) is vertigo with migraine, either as a symptom of migraine or as a related neurological disorder.

<span class="mw-page-title-main">Meclizine</span> Chemical compound


Meclizine, sold under the brand name Bonine, among others, is an antihistamine used to treat motion sickness and dizziness (vertigo). It is taken by mouth. Effects generally begin in an hour and last for up to a day.

Space neuroscience or astroneuroscience is the scientific study of the central nervous system (CNS) functions during spaceflight. Living systems can integrate the inputs from the senses to navigate in their environment and to coordinate posture, locomotion, and eye movements. Gravity has a fundamental role in controlling these functions. In weightlessness during spaceflight, integrating the sensory inputs and coordinating motor responses is harder to do because gravity is no longer sensed during free-fall. For example, the otolith organs of the vestibular system no longer signal head tilt relative to gravity when standing. However, they can still sense head translation during body motion. Ambiguities and changes in how the gravitational input is processed can lead to potential errors in perception, which affects spatial orientation and mental representation. Dysfunctions of the vestibular system are common during and immediately after spaceflight, such as space motion sickness in orbit and balance disorders after return to Earth.

Hypobaric decompression is the reduction in ambient pressure below the normal range of sea level atmospheric pressure. Altitude decompression is hypobaric decompression which is the natural consequence of unprotected elevation to altitude, while other forms of hypobaric decompression are due to intentional or unintentional release of pressurization of a pressure suit or pressurized compartment, vehicle or habitat, and may be controlled or uncontrolled, or the reduction of pressure in a hypobaric chamber.

<span class="mw-page-title-main">Cancer and nausea</span>

Cancer and nausea are associated in about fifty percent of people affected by cancer. This may be as a result of the cancer itself, or as an effect of the treatment such as chemotherapy, radiation therapy, or other medication such as opiates used for pain relief. About 70–80% of people undergoing chemotherapy experience nausea or vomiting. Nausea and vomiting may also occur in people not receiving treatment, often as a result of the disease involving the gastrointestinal tract, electrolyte imbalance, or as a result of anxiety. Nausea and vomiting may be experienced as the most unpleasant side effects of cytotoxic drugs and may result in patients delaying or refusing further radiotherapy or chemotherapy.

Simulator sickness is a subset of motion sickness that is typically experienced while playing video games from first-person perspective. It was discovered in the context of aircraft pilots who undergo training for extended periods of time in flight simulators. Due to the spatial limitations imposed on these simulators, perceived discrepancies between the motion of the simulator and that of the vehicle can occur and lead to simulator sickness. It is similar to motion sickness in many ways, but occurs in simulated environments and can be induced without actual motion. Symptoms of simulator sickness include discomfort, apathy, drowsiness, disorientation, fatigue, and nausea. These symptoms can reduce the effectiveness of simulators in flight training and result in systematic consequences such as decreased simulator use, compromised training, ground safety, and flight safety. Pilots are less likely to want to repeat the experience in a simulator if they have suffered from simulator sickness and hence can reduce the number of potential users. It can also compromise training in two safety-critical ways:

  1. It can distract the pilot during training sessions.
  2. It can cause the pilot to adopt certain counterproductive behaviors to prevent symptoms from occurring.

Virtual reality sickness occurs when exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms. The most common symptoms are general discomfort, eye strain, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy. Other symptoms include postural instability and retching. Common causes are low frame rate, input lag, and the vergence-accommodation-conflict.

Inner ear decompression sickness, (IEDCS) or audiovestibular decompression sickness is a medical condition of the inner ear caused by the formation of gas bubbles in the tissues or blood vessels of the inner ear. Generally referred to as a form of decompression sickness, it can also occur at constant pressure due to inert gas counterdiffusion effects.

References

  1. 1 2 3 4 5 6 7 Benson AJ (2002). "35". Motion Sickness. In: Medical Aspects of Harsh Environments. Vol. 2. Washington, DC: Borden Institute. Archived from the original on 2009-01-11. Retrieved 2008-05-09.
  2. Samuel, Orit; Tal, Dror (November 2015). "Airsickness: Etiology, Treatment, and Clinical Importance—A Review". Military Medicine. 180 (11): 1135–1139. doi:10.7205/MILMED-D-14-00315. ISSN   0026-4075. PMID   26540704.
  3. 1 2 3 4 Antunano, Melchor J., M.D. Medical Facts for Pilots (pdf) Federal Aviation Administration, Civil Aerospace Medical Institute. Publication: AM-400-03/1.
  4. Hain, Timothy C., M.D. (2006) Motion Sickness.
  5. Weinstein SE, Stern RM (October 1997). "Comparison of marezine and dramamine in preventing symptoms of motion sickness". Aviat Space Environ Med. 68 (10): 890–4. PMID   9327113.
  6. Spinks, Anneliese; Wasiak, Jason (2011-06-15). "Scopolamine (hyoscine) for preventing and treating motion sickness". The Cochrane Database of Systematic Reviews. 2007 (6): CD002851. doi:10.1002/14651858.CD002851.pub4. hdl: 10072/19480 . ISSN   1469-493X. PMC   7138049 . PMID   21678338.
  7. "Squadron aims to reduce use of air-sickness bags". November 2010.
  8. "Motion Sickness Treatments Make Waves". Scientific American .
  9. Lucertini, M.; Bianca, E.; Marciano, E.; Pettorossi, V. E. (October 2019). "Analysis of the nystagmus evoked by cross-coupled acceleration (Coriolis phenomenon)". Acta Otorhinolaryngologica Italica. 39 (5): 341–346. doi:10.14639/0392-100x-2073. ISSN   1827-675X. PMC   6843578 . PMID   30933174.
  10. Bertolucci LE, DiDario B (December 1995). "Efficacy of a portable acustimulation device in controlling seasickness". Aviat Space Environ Med. 66 (12): 1155–8. PMID   8747609.
  11. Brainard A, Gresham C (2014). "Prevention and treatment of motion sickness". Am Fam Physician. 90 (1): 41–6. PMID   25077501.
  12. Han-Chung, Lien; Wei Ming, Sun; Yen-Hsueh, Chen; Hyerang, Kim; William, Hasler; Chung, Owyang (11 March 2003). "Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection". American Journal of Physiology. Gastrointestinal and Liver Physiology. 284 (3): 481–489. doi:10.1152/ajpgi.00164.2002. PMID   12576305.
  13. Stern, RM; Jokerst, MD; Muth, ER; Hollis, C (Jul–Aug 2001). "Acupressure relieves the symptoms of motion sickness and reduces abnormal gastric activity". Alternative Therapies in Health and Medicine. 7 (4): 91–94. PMID   11452572.
  14. Golding, J. F. (2016). "Motion sickness". Neuro-Otology. Handbook of Clinical Neurology. Vol. 137. pp. 371–390. doi:10.1016/B978-0-444-63437-5.00027-3. ISBN   9780444634375. ISSN   0072-9752. PMID   27638085.
  15. "Motion Sickness". www.aopa.org. 2016-10-03. Retrieved 2024-11-17.
  16. "Motion Sickness". www.aopa.org. 2016-10-03. Retrieved 2024-11-17.