Acclimatization or acclimatisation (also called acclimation or acclimatation) is the process in which an individual organism adjusts to a change in its environment (such as a change in altitude, temperature, humidity, photoperiod, or pH), allowing it to maintain fitness across a range of environmental conditions. Acclimatization occurs in a short period of time (hours to weeks), and within the organism's lifetime (compared to adaptation, which is evolution, taking place over many generations). This may be a discrete occurrence (for example, when mountaineers acclimate to high altitude over hours or days) or may instead represent part of a periodic cycle, such as a mammal shedding heavy winter fur in favor of a lighter summer coat. Organisms can adjust their morphological, behavioral, physical, and/or biochemical traits in response to changes in their environment. [1] While the capacity to acclimate to novel environments has been well documented in thousands of species, researchers still know very little about how and why organisms acclimate the way that they do.
The nouns acclimatization and acclimation (and the corresponding verbs acclimatize and acclimate ) are widely regarded as synonymous, [2] [3] [4] [5] [6] [7] both in general vocabulary [2] [3] [4] [5] and in medical vocabulary. [6] [7] The synonym acclimation [4] [6] is less commonly encountered, and fewer dictionaries enter it.
In order to maintain performance across a range of environmental conditions, there are several strategies organisms use to acclimate. In response to changes in temperature, organisms can change the biochemistry of cell membranes making them more fluid in cold temperatures and less fluid in warm temperatures by increasing the number of membrane proteins. [8] In response to certain stressors, some organisms express so-called heat shock proteins that act as molecular chaperones and reduce denaturation by guiding the folding and refolding of proteins. It has been shown that organisms which are acclimated to high or low temperatures display relatively high resting levels of heat shock proteins so that when they are exposed to even more extreme temperatures the proteins are readily available. Expression of heat shock proteins and regulation of membrane fluidity are just two of many biochemical methods organisms use to acclimate to novel environments.
Organisms are able to change several characteristics relating to their morphology in order to maintain performance in novel environments. For example, birds often increase their organ size to increase their metabolism. This can take the form of an increase in the mass of nutritional organs or heat-producing organs, like the pectorals (with the latter being more consistent across species [9] ). [10]
While the capacity for acclimatization has been documented in thousands of species, researchers still know very little about how and why organisms acclimate in the way that they do. Since researchers first began to study acclimation, the overwhelming hypothesis has been that all acclimation serves to enhance the performance of the organism. This idea has come to be known as the beneficial acclimation hypothesis. Despite such widespread support for the beneficial acclimation hypothesis, not all studies show that acclimation always serves to enhance performance (See beneficial acclimation hypothesis ). One of the major objections to the beneficial acclimation hypothesis is that it assumes that there are no costs associated with acclimation. [11] However, there are likely to be costs associated with acclimation. These include the cost of sensing the environmental conditions and regulating responses, producing structures required for plasticity (such as the energetic costs in expressing heat shock proteins), and genetic costs (such as linkage of plasticity-related genes with harmful genes). [12]
Given the shortcomings of the beneficial acclimation hypothesis, researchers are continuing to search for a theory that will be supported by empirical data.
The degree to which organisms are able to acclimate is dictated by their phenotypic plasticity or the ability of an organism to change certain traits. Recent research in the study of acclimation capacity has focused more heavily on the evolution of phenotypic plasticity rather than acclimation responses. Scientists believe that when they understand more about how organisms evolved the capacity to acclimate, they will better understand acclimation.
Many plants, such as maple trees, irises, and tomatoes, can survive freezing temperatures if the temperature gradually drops lower and lower each night over a period of days or weeks. The same drop might kill them if it occurred suddenly. Studies have shown that tomato plants that were acclimated to higher temperature over several days were more efficient at photosynthesis at relatively high temperatures than were plants that were not allowed to acclimate. [13]
In the orchid Phalaenopsis , phenylpropanoid enzymes are enhanced in the process of plant acclimatisation at different levels of photosynthetic photon flux. [14]
This section's factual accuracy is disputed .(August 2011) |
Animals acclimatize in many ways. Sheep grow very thick wool in cold, damp climates. Fish are able to adjust only gradually to changes in water temperature and quality. Tropical fish sold at pet stores are often kept in acclimatization bags until this process is complete. [15] Lowe & Vance (1995) were able to show that lizards acclimated to warm temperatures could maintain a higher running speed at warmer temperatures than lizards that were not acclimated to warm conditions. [16] Fruit flies that develop at relatively cooler or warmer temperatures have increased cold or heat tolerance as adults, respectively (See Developmental plasticity). [17]
The salt content of sweat and urine decreases as people acclimatize to hot conditions. [18] Plasma volume, heart rate, and capillary activation are also affected. [19]
Acclimatization to high altitude continues for months or even years after initial ascent, and ultimately enables humans to survive in an environment that, without acclimatization, would kill them. Humans who migrate permanently to a higher altitude naturally acclimatize to their new environment by developing an increase in the number of red blood cells to increase the oxygen carrying capacity of the blood, in order to compensate for lower levels of oxygen intake. [20] [21]
Abiotic stress is the negative impact of non-living factors on the living organisms in a specific environment. The non-living variable must influence the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism in a significant way.
Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen.
Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
A hot spring, hydrothermal spring, or geothermal spring is a spring produced by the emergence of geothermally heated groundwater onto the surface of the Earth. The groundwater is heated either by shallow bodies of magma or by circulation through faults to hot rock deep in the Earth's crust.
Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. In accordance with the internationally established definition, freezing means the solidification phase change of a liquid or the liquid content of a substance, usually due to cooling.
Chloroflexus aurantiacus is a photosynthetic bacterium isolated from hot springs, belonging to the green non-sulfur bacteria. This organism is thermophilic and can grow at temperatures from 35 to 70 °C. Chloroflexus aurantiacus can survive in the dark if oxygen is available. When grown in the dark, Chloroflexus aurantiacus has a dark orange color. When grown in sunlight it is dark green. The individual bacteria tend to form filamentous colonies enclosed in sheaths, which are known as trichomes.
Cold hardening is the physiological and biochemical process by which an organism prepares for cold weather.
Thermal pollution, sometimes called "thermal enrichment", is the degradation of water quality by any process that changes ambient water temperature. Thermal pollution is the rise or drop in the temperature of a natural body of water caused by human influence. Thermal pollution, unlike chemical pollution, results in a change in the physical properties of water. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. Urban runoff—stormwater discharged to surface waters from rooftops, roads, and parking lots—and reservoirs can also be a source of thermal pollution. Thermal pollution can also be caused by the release of very cold water from the base of reservoirs into warmer rivers.
Thermotropism or thermotropic movement is the movement of an organism or a part of an organism in response to heat or changes from the environment's temperature. A common example is the curling of Rhododendron leaves in response to cold temperatures. Mimosa pudica also show thermotropism by the collapsing of leaf petioles leading to the folding of leaflets, when temperature drops.
Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.
Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.
Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.
The yellow-rumped leaf-eared mouse, otherwise known as the Patagonian leaf-eared mouse, is a species of rodent in the family Cricetidae and order Rodentia. It is the most widespread member of the genus.
An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter. An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space. The energy lost in dissipating the proton gradient via UCPs is not used to do biochemical work. Instead, heat is generated. This is what links UCP to thermogenesis. However, not every type of UCPs are related to thermogenesis. Although UCP2 and UCP3 are closely related to UCP1, UCP2 and UCP3 do not affect thermoregulatory abilities of vertebrates. UCPs are positioned in the same membrane as the ATP synthase, which is also a proton channel. The two proteins thus work in parallel with one generating heat and the other generating ATP from ADP and inorganic phosphate, the last step in oxidative phosphorylation. Mitochondria respiration is coupled to ATP synthesis, but is regulated by UCPs. UCPs belong to the mitochondrial carrier (SLC25) family.
A eurytherm is an organism, often an endotherm, that can function at a wide range of ambient temperatures. To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and larval stages. These wide ranges of tolerable temperatures are directly derived from the tolerance of a given eurythermal organism's proteins. Extreme examples of eurytherms include Tardigrades (Tardigrada), the desert pupfish, and green crabs, however, nearly all mammals, including humans, are considered eurytherms. Eurythermy can be an evolutionary advantage: adaptations to cold temperatures, called cold-eurythemy, are seen as essential for the survival of species during ice ages. In addition, the ability to survive in a wide range of temperatures increases a species' ability to inhabit other areas, an advantage for natural selection.
The beneficial acclimation hypothesis (BAH) is the physiological hypothesis that acclimating to a particular environment provides an organism with advantages in that environment. First formally tested by Armand Marie Leroi, Albert Bennett, and Richard Lenski in 1994, it has however been a central assumption in historical physiological work that acclimation is adaptive. Further refined by Raymond B. Huey and David Berrigan under the strong inference approach, the hypothesis has been falsified as a general rule by a series of multiple hypotheses experiments.
This article discusses the Unique properties of hyperthermophilic archaea. Hyperthermophiles are organisms that can live at temperatures ranging between 70 and 125 °C. They have been the subject of intense study since their discovery in 1977 in the Galapagos Rift. It was thought impossible for life to exist at temperatures as great as 100 °C until Pyrolobus fumarii was discovered in 1997. P. fumarii is a unicellular organism from the domain Archaea living in the hydrothermal vents in black smokers along the Mid-Atlantic Ridge. These organisms can live at 106 °C at a pH of 5.5. To get energy from their environment these organisms are facultatively aerobic obligate chemolithoautotrophs, meaning these organisms build biomolecules by harvesting carbon dioxide (CO2) from their environment by using hydrogen (H2) as the primary electron donor and nitrate (NO3−) as the primary electron acceptor. These organisms can even survive the autoclave, which is a machine designed to kill organisms through high temperature and pressure. Because hyperthermophiles live in such hot environments, they must have DNA, membrane, and enzyme modifications that help them withstand intense thermal energy. Such modifications are currently being studied to better understand what allows an organism or protein to survive such harsh conditions. By learning what lets these organisms survive such harsh conditions, researchers can better synthesize molecules for industry that are harder to denature.
Cold and heat adaptations in humans are a part of the broad adaptability of Homo sapiens. Adaptations in humans can be physiological, genetic, or cultural, which allow people to live in a wide variety of climates. There has been a great deal of research done on developmental adjustment, acclimatization, and cultural practices, but less research on genetic adaptations to colder and hotter temperatures.
Countergradient variation is a type of phenotypic plasticity that occurs when the phenotypic variation determined by a biological population's genetic components opposes the phenotypic variation caused by an environmental gradient. This can cause different populations of the same organism to display similar phenotypes regardless of their underlying genetics and differences in their environments.
The temperature-size rule denotes the plastic response of organismal body size to environmental temperature variation. Organisms exhibiting a plastic response are capable of allowing their body size to fluctuate with environmental temperature. First coined by David Atkinson in 1996, it is considered to be a unique case of Bergmann's rule that has been observed in plants, animals, birds, and a wide variety of ectotherms. Although exceptions to the temperature-size rule exist, recognition of this widespread "rule" has amassed efforts to understand the physiological mechanisms underlying growth and body size variation in differing environmental temperatures.
Thermal ecology is the study of the interactions between temperature and organisms. Such interactions include the effects of temperature on an organism's physiology, behavioral patterns, and relationship with its environment. While being warmer is usually associated with greater fitness, maintaining this level of heat costs a significant amount of energy. Organisms will make various trade-offs so that they can continue to operate at their preferred temperatures and optimize metabolic functions. With the emergence of climate change scientists are investigating how species will be affected and what changes they will undergo in response.
{{cite journal}}
: CS1 maint: unfit URL (link)