Correlated color temperature

Last updated
Log-log graphs of peak emission wavelength and radiant exitance vs black-body temperature, plotted on the blue line. Red arrows show that 5780 K black bodies have 501 nm peak wavelength and 63.3 MW/m radiant exitance. Blackbody peak wavelength exitance vs temperature.svg
Log-log graphs of peak emission wavelength and radiant exitance vs black-body temperature, plotted on the blue line. Red arrows show that 5780 K black bodies have 501 nm peak wavelength and 63.3 MW/m radiant exitance.

Correlated color temperature (CCT, Tcp) refers to the temperature of a Planckian radiator whose perceived color most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions." [1] [2]

Contents

Motivation

Black-body radiators are the reference by which the whiteness of light sources is judged. A black body is characterized by its temperature and emits light of a specific hue, which is referred to as color temperature. [3] [4] [5] In practice, light sources that approximate Planckian radiators, such as certain fluorescent or high-intensity discharge lamps, are assessed based on their CCT, which is the temperature of a Planckian radiator whose color most closely resembles that of the light source. For light sources that do not follow the Planckian distribution, aligning them with a black body is not straightforward; thus, the concept of CCT is extended to represent these sources as accurately as possible on a one-dimensional color temperature scale, where "as accurately as possible" is determined within the framework of an objective color space.

Background

Judd's (r,g) diagram. The concentric curves indicate the loci of constant purity. Judd's (r,g) diagram.svg
Judd's (r,g) diagram. The concentric curves indicate the loci of constant purity.
Judd's Maxwell triangle. Planckian locus in gray. Translating from trilinear co-ordinates into Cartesian co-ordinates leads to the next diagram. Judd's Maxwell triangle.svg
Judd's Maxwell triangle. Planckian locus in gray. Translating from trilinear co-ordinates into Cartesian co-ordinates leads to the next diagram.
Judd's uniform chromaticity space (UCS), with the Planckian locus and the isotherms from 1000 K to 10000 K, perpendicular to the locus. Judd calculated the isotherms in this space before translating them back into the (x,y) chromaticity space, as depicted in the diagram at the top of the article. Judd's-UCS.png
Judd's uniform chromaticity space (UCS), with the Planckian locus and the isotherms from 1000 K to 10000 K, perpendicular to the locus. Judd calculated the isotherms in this space before translating them back into the (x,y) chromaticity space, as depicted in the diagram at the top of the article.
Close up of the Planckian locus in the CIE 1960 UCS, with the isotherms in mireds. Note the even spacing of the isotherms when using the reciprocal temperature scale and compare with the similar figure below. The even spacing of the isotherms on the locus implies that the mired scale is a better measure of perceptual color difference than the temperature scale. Planckian-locus-in-mireds.png
Close up of the Planckian locus in the CIE 1960 UCS, with the isotherms in mireds. Note the even spacing of the isotherms when using the reciprocal temperature scale and compare with the similar figure below. The even spacing of the isotherms on the locus implies that the mired scale is a better measure of perceptual color difference than the temperature scale.

The notion of using Planckian radiators as a yardstick against which to judge other light sources is not new. [6] In 1923, writing about "grading of illuminants with reference to quality of color ... the temperature of the source as an index of the quality of color", Priest essentially described CCT as we understand it today, going so far as to use the term "apparent color temperature", and astutely recognized three cases: [7]

Several important developments occurred in 1931. In chronological order:

  1. Raymond Davis published a paper on "correlated color temperature" (his term). Referring to the Planckian locus on the r-g diagram, he defined the CCT as the average of the "primary component temperatures" (RGB CCTs), using trilinear coordinates. [8]
  2. The CIE announced the XYZ color space.
  3. Deane B. Judd published a paper on the nature of "least perceptible differences" with respect to chromatic stimuli. By empirical means he determined that the difference in sensation, which he termed ΔE for a "discriminatory step between colors ... Empfindung" (German for sensation) was proportional to the distance of the colors on the chromaticity diagram. Referring to the (r,g) chromaticity diagram depicted aside, he hypothesized that [9]
K ΔE = |c1c2| = max(|r1r2|, |g1g2|).

These developments paved the way for the development of new chromaticity spaces that are more suited to estimating correlated color temperatures and chromaticity differences. Bridging the concepts of color difference and color temperature, Priest made the observation that the eye is sensitive to constant differences in "reciprocal" temperature: [10]

A difference of one micro-reciprocal-degree (μrd) is fairly representative of the doubtfully perceptible difference under the most favorable conditions of observation.

Priest proposed to use "the scale of temperature as a scale for arranging the chromaticities of the several illuminants in a serial order". Over the next few years, Judd published three more significant papers:

The first verified the findings of Priest, [7] Davis, [8] and Judd, [9] with a paper on sensitivity to change in color temperature. [11]

The second proposed a new chromaticity space, guided by a principle that has become the holy grail of color spaces: perceptual uniformity (chromaticity distance should be commensurate with perceptual difference). By means of a projective transformation, Judd found a more "uniform chromaticity space" (UCS) in which to find the CCT. Judd determined the "nearest color temperature" by simply finding the point on the Planckian locus nearest to the chromaticity of the stimulus on Maxwell's color triangle, depicted aside. The transformation matrix he used to convert X,Y,Z tristimulus values to R,G,B coordinates was: [12]

From this, one can find these chromaticities: [13]

The third depicted the locus of the isothermal chromaticities on the CIE 1931 x,y chromaticity diagram. [14] Since the isothermal points formed normals on his UCS diagram, transformation back into the xy plane revealed them still to be lines, but no longer perpendicular to the locus.

Calculation

MacAdam's "uniform chromaticity scale" diagram; a simplification of Judd's UCS. CIE 1960 UCS.png
MacAdam's "uniform chromaticity scale" diagram; a simplification of Judd's UCS.

Judd's idea of determining the nearest point to the Planckian locus on a uniform chromaticity space is current. In 1937, MacAdam suggested a "modified uniform chromaticity scale diagram", based on certain simplifying geometrical considerations: [15]

This (u,v) chromaticity space became the CIE 1960 color space, which is still used to calculate the CCT (even though MacAdam did not devise it with this purpose in mind). [16] Using other chromaticity spaces, such as u'v', leads to non-standard results that may nevertheless be perceptually meaningful. [17]

Close up of the CIE 1960 UCS. The isotherms are perpendicular to the Planckian locus, and are drawn to indicate the maximum distance from the locus that the CIE considers the correlated color temperature to be meaningful: Duv = +- 0.05 Planckian-locus.png
Close up of the CIE 1960 UCS. The isotherms are perpendicular to the Planckian locus, and are drawn to indicate the maximum distance from the locus that the CIE considers the correlated color temperature to be meaningful: Δuv = ± 0.05

The distance from the locus (i.e., degree of departure from a black body) is traditionally indicated in units of Δuv; positive for points above the locus. This concept of distance has evolved to become CIELAB ΔE*, which continues to be used today.

Robertson's method

Before the advent of powerful personal computers, it was common to estimate the correlated color temperature by way of interpolation from look-up tables and charts. [18] The most famous such method is Robertson's, [19] who took advantage of the relatively even spacing of the mired scale (see above) to calculate the CCT Tc using linear interpolation of the isotherm's mired values: [20]

Computation of the CCT Tc corresponding to the chromaticity coordinate
(
u
T
,
v
T
)
{\displaystyle \scriptstyle (u_{T},v_{T})}
in the CIE 1960 UCS. Robertson's CCT computation method.svg
Computation of the CCT Tc corresponding to the chromaticity coordinate in the CIE 1960 UCS.

where and are the color temperatures of the look-up isotherms and i is chosen such that . (Furthermore, the test chromaticity lies between the only two adjacent lines for which .)

If the isotherms are tight enough, one can assume , leading to

The distance of the test point to the i-th isotherm is given by

where is the chromaticity coordinate of the i-th isotherm on the Planckian locus and mi is the isotherm's slope. Since it is perpendicular to the locus, it follows that where li is the slope of the locus at .

Precautions

Although the CCT can be calculated for any chromaticity coordinate, the result is meaningful only if the light source somewhat approximates a Planckian radiator. [21] The CIE recommends that "The concept of correlated color temperature should not be used if the chromaticity of the test source differs more than Δuv = 5×10-2 from the Planckian radiator." [22] Beyond a certain value of Δuv, a chromaticity co-ordinate may be equidistant to two points on the locus, causing ambiguity in the CCT.

Approximation

If a narrow range of color temperatures is considered—those encapsulating daylight being the most practical case—one can approximate the Planckian locus in order to calculate the CCT in terms of chromaticity coordinates. Following Kelly's observation that the isotherms intersect in the purple region near (x = 0.325, y = 0.154), [18] McCamy proposed this cubic approximation: [23]

where n = (xxe)/(y - ye) is the inverse slope line, and (xe = 0.3320, ye = 0.1858) is the "epicenter"; quite close to the intersection point mentioned by Kelly. The maximum absolute error for color temperatures ranging from 2856 K (illuminant A) to 6504 K (D65) is under 2 K.

Hernández-André's 1999 proposal, using exponential terms, considerably extends the applicable range by adding a second epicenter for high color temperatures: [24]

where n is as before and the other constants are defined below:

3–50  kK 50–800 kK
xe0.33660.3356
ye0.17350.1691
A0−949.8631536284.48953
A16253.803380.00228
t10.921590.07861
A228.705995.4535×10−36
t20.200390.01543
A30.00004
t30.07125

The author suggests that one use the low-temperature equation to determine whether the higher-temperature parameters are needed.

Ohno (2013) proposes an accurate combined method based on a lookup table, a "parabolic" search, and a "triangular" search. The paper stresses the importance of also returning the Δuv value for evalulation of light sources. [25] As it does not use one fixed table, it can be applied to any observer color matching function. [26]

The inverse calculation, from color temperature to corresponding chromaticity coordinates, is discussed in Planckian locus § Approximation.

Related Research Articles

<span class="mw-page-title-main">CIELAB color space</span> Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes. A chromatic adaptation transform (CAT) function emulates this important aspect of color perception in color appearance models.

<span class="mw-page-title-main">Dominant wavelength</span> Any monochromatic spectral light that evokes the corresponding perception of hue

In color science, the dominant wavelength is a method of approximating a color's hue. Along with purity, it makes up one half of the Helmholtz coordinates. A color's dominant wavelength is the wavelength of monochromatic spectral light that, if plotted in a chromaticity diagram, the straight line that passes through the color in question and the white point will also pass through this wavelength.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

<span class="mw-page-title-main">Color rendering index</span> Measure of ability of a light source to reproduce colors in comparison with a standard light source

A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source.

<span class="mw-page-title-main">Planckian locus</span> Locus of colors of incandescent black bodies within a color space

In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes. It goes from deep red at low temperatures through orange, yellowish, white, and finally bluish white at very high temperatures.

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

In 1931 the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and the visual sensation of specific colors by human color vision. The CIE color spaces are mathematical models that create a "standard observer", which attempts to predict the perception of unique hues of color. These color spaces are essential tools that provide the foundation for measuring color for industry, including inks, dyes, and paints, illumination, color imaging, etc. The CIE color spaces contributed to the development of color television, the creation of instruments for maintaining consistent color in manufacturing processes, and other methods of color management.

<span class="mw-page-title-main">Mired</span> Unit of reciprocal color temperature

Contracted from the term micro reciprocal degree, the mired is a unit of measurement used to express color temperature. Values in mireds are calculated by the formula:

<span class="mw-page-title-main">Standard illuminant</span> Theoretical source of visible light

A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting.

Adams chromatic valence color spaces are a class of color spaces suggested by Elliot Quincy Adams. Two important Adams chromatic valence spaces are CIELUV and Hunter Lab.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIECAM02</span> Color appearance model

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

<span class="mw-page-title-main">Color triangle</span> Arrangement of colors within a triangle

A color triangle is an arrangement of colors within a triangle, based on the additive or subtractive combination of three primary colors at its corners.

<span class="mw-page-title-main">CIE 1960 color space</span>

The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.

The CIE 1964 (U*, V*, W*) color space, also known as CIEUVW, is based on the CIE 1960 UCS:

The color rendering of a light source refers to its ability to reveal the colors of various objects faithfully in comparison with an ideal or natural light source. Light sources with good color rendering are desirable in color-critical applications such as neonatal care and art restoration. It is defined by the International Commission on Illumination (CIE) as follows:

Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant.

<span class="mw-page-title-main">Günter Wyszecki</span>

Günter Wolfgang Wyszecki was a German-Canadian physicist who made important contributions to the fields of colorimetry, color discrimination, color order, and color vision.

The von Kries coefficient law in color adaptation describes the relationship between the illuminant and the human visual system sensitivity. The law accounts for the approximate color constancy in the human visual system. It is the oldest and most widely used law to quantify color adaptation, and is used widely in the field of vision and chromatic adaptation.

Hunter Lab is a color space defined in 1948 by Richard S. Hunter. It was designed to be computed via simple formulas from the CIEXYZ space, but to be more perceptually uniform. Hunter named his coordinates L, a and b. Hunter Lab was a precursor to CIELAB, created in 1976 by the International Commission on Illumination (CIE), which named the coordinates for CIELAB as L*, a*, b* to distinguish them from Hunter's coordinates.

References

  1. CIE/IEC 17.4:1987 International Lighting Vocabulary Archived 2010-02-27 at the Wayback Machine ( ISBN   3900734070)
  2. Borbély, Ákos; Sámson, Árpád; Schanda, János (December 2001). "The concept of correlated colour temperature revisited". Color Research & Application. 26 (6): 450–457. doi:10.1002/col.1065. Archived from the original on 2009-02-05.
  3. "The Color White". Architect Magazine . 19 March 2007. Retrieved 16 July 2024.
  4. "What is CCT?". Anova Lighting. 30 May 2024. Retrieved 16 July 2024.
  5. "Effects of illuminance and correlated color temperature of indoor light on emotion perception". Nature . 12 July 2021. Retrieved 16 July 2024.
  6. Hyde, Edward P. (June 1911). "A New Determination of the Selective Radiation from Tantalum (abstract)". Physical Review. Series I. 32 (6). The American Physical Society: 632–633. doi:10.1103/PhysRevSeriesI.32.632. This existence of a color match is a consequence of there being approximately the same energy distribution in the visible spectra.
  7. 1 2 Priest, Irwin G. (1923). "The colorimetry and photometry of daylight ·and incandescent illuminants by the method of rotatory dispersion". JOSA . 7 (12): 1175–1209. Bibcode:1923JOSA....7.1175P. doi:10.1364/JOSA.7.001175. The color temperature of a source is the temperature at which a Planckian radiator would emit radiant energy competent to evoke a color of the same quality as that evoked by the radiant energy from the source in question. The color temperature is not necessarily the same as the 'true temperature' of the source; but this circumstance has no significance whatever in the use of the color temperature as a means to the end of establishing a scale for the quality of the color of illuminants. For this purpose no knowledge of the temperature of the source nor indeed of its emissive properties is required. All that is involved in giving the color temperature of any illuminant is the affirmation that the color of the luminant is of the same quality as the color of a Planckian radiator at the given temperature.
  8. 1 2 Davis, Raymond (1931). "A Correlated Color Temperature for Illuminants". Bureau of Standards Journal of Research. 7 (4): 659–681. doi: 10.6028/jres.007.039 . The ideal correlated colour temperature of a light source is the absolute temperature at which the Planckian radiator emits radiant energy component to evoke a colour which, of all Planckian colours, most closely approximates the colour evoked by the source in question. from Research Paper 365
  9. 1 2 Judd, Deane B. (1931). "Chromaticity sensibility to stimulus differences". JOSA . 22 (2): 72–108. doi:10.1364/JOSA.22.000072.
  10. Priest, Irwin G. (February 1933). "A proposed scale for use in specifying the chromaticity of incandescent illuminants and various phases of daylight". JOSA . 23 (2): 42. Bibcode:1933JOSA...23...41P. doi:10.1364/JOSA.23.000041.
  11. Judd, Deane B. (January 1933). "Sensibility to Color-Temperature Change as a Function of Temperature". JOSA . 23 (1): 7. Bibcode:1933JOSA...23....7J. doi:10.1364/JOSA.23.000007. Regarding (Davis, 1931): This simpler statement of the spectral-centroid relation might have been deduced by combining two previous findings, one by Gibson (see footnote 10, p. 12) concerning a spectral-centroid relation between incident and transmitted light for daylight filters, the other by Langmuir and Orange (Trans. A.I.E.E., 32, 1944–1946 (1913)) concerning a similar relation involving reciprocal temperature. The mathematical analysis on which this latter finding is based was given later by Foote, Mohler and Fairchild, J. Wash. Acad. Sci. 7, 545–549 (1917), and Gage, Trans. I.E.S. 16, 428–429 (1921) also called attention to this relation.
  12. Judd, Deane B. (January 1935). "A Maxwell Triangle Yielding Uniform Chromaticity Scales" (PDF). JOSA . 25 (1): 24–35. Bibcode:1935JOSA...25...24J. doi:10.1364/JOSA.25.000024. Archived (PDF) from the original on 2017-01-30. An important application of this coordinate system is its use in finding from any series of colors the one most resembling a neighboring color of the same brilliance, for example, the finding of the nearest color temperature for a neighboring non-Planckian stimulus. The method is to draw the shortest line from the point representing the non-Planckian stimulus to the Planckian locus.
  13. OSA Committee on Colorimetry (November 1944). "Quantitative data and methods for colorimetry". JOSA . 34 (11): 633–688. Bibcode:1944JOSA...34..633C. doi:10.1364/JOSA.34.000633. (recommended reading)
  14. Judd, Deane B. (November 1936). "Estimation of Chromaticity Differences and Nearest Color Temperatures on the Standard 1931 I.C.I. Colorimetric Coordinate System" (PDF). JOSA . 26 (11): 421–426. Bibcode:1936JOSA...26..421J. doi:10.1364/JOSA.26.000421. Archived (PDF) from the original on 2017-02-11.
  15. MacAdam, David L. (August 1937). "Projective transformations of I.C.I. color specifications". JOSA . 27 (8): 294–299. Bibcode:1937JOSA...27..294M. doi:10.1364/JOSA.27.000294.
  16. The CIE definition of correlated color temperature (removed) Archived 2009-02-05 at the Wayback Machine
  17. Schanda, János; Danyi, M. (1977). "Correlated Color-Temperature Calculations in the CIE 1976 Chromaticity Diagram". Color Research & Application. 2 (4). Wiley Interscience: 161–163. doi:10.1002/col.5080020403. Correlated color temperature can be calculated using the new diagram, leading to somewhat different results than those calculated according to the CIE 1960 uv diagram.
  18. 1 2 Kelly, Kenneth L. (August 1963). "Lines of Constant Correlated Color Temperature Based on MacAdam's (u,v) Uniform Chromaticity Transformation of the CIE Diagram". JOSA. 53 (8): 999–1002. Bibcode:1963JOSA...53..999K. doi:10.1364/JOSA.53.000999.
  19. Robertson, Alan R. (November 1968). "Computation of Correlated Color Temperature and Distribution Temperature". JOSA . 58 (11): 1528–1535. Bibcode:1968JOSA...58.1528R. doi:10.1364/JOSA.58.001528.
  20. ANSI C implementation Archived 2008-04-22 at the Wayback Machine , Bruce Lindbloom
  21. Walter, Wolfgang (February 1992). "Determination of correlated color temperature based on a color-appearance model". Color Research & Application. 17 (1): 24–30. doi:10.1002/col.5080170107. The concept of correlated color temperature is only useful for lamps with chromaticity points close to the black body...
  22. Schanda, János (2007). "3: CIE Colorimetry". Colorimetry: Understanding the CIE System. Wiley Interscience. pp. 37–46. doi:10.1002/9780470175637.ch3. ISBN   978-0-470-04904-4.
  23. McCamy, Calvin S. (April 1992). "Correlated color temperature as an explicit function of chromaticity coordinates". Color Research & Application. 17 (2): 142–144. doi:10.1002/col.5080170211. plus erratum doi : 10.1002/col.5080180222
  24. Hernández-Andrés, Javier; Lee, RL; Romero, J (September 20, 1999). "Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities" (PDF). Applied Optics. 38 (27): 5703–5709. Bibcode:1999ApOpt..38.5703H. doi:10.1364/AO.38.005703. PMID   18324081. Archived (PDF) from the original on April 1, 2016.
  25. Ohno, Yoshi (2 January 2014). "Practical Use and Calculation of CCT and Duv". LEUKOS. 10 (1): 47–55. doi:10.1080/15502724.2014.839020. S2CID   122251872.
  26. "colour.temperature.uv_to_CCT_Ohno2013 — Colour 0.4.4 documentation". colour.readthedocs.io.