Planckian locus

Last updated
Planckian locus in the CIE 1931 chromaticity diagram PlanckianLocus.png
Planckian locus in the CIE 1931 chromaticity diagram

In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes. It goes from deep red at low temperatures through orange, yellowish, white, and finally bluish white at very high temperatures.

Contents

A color space is a three-dimensional space; that is, a color is specified by a set of three numbers (the CIE coordinates X, Y, and Z, for example, or other values such as hue, colorfulness, and luminance) which specify the color and brightness of a particular homogeneous visual stimulus. A chromaticity is a color projected into a two-dimensional space that ignores brightness. For example, the standard CIE XYZ color space projects directly to the corresponding chromaticity space specified by the two chromaticity coordinates known as x and y, making the familiar chromaticity diagram shown in the figure. The Planckian locus, the path that the color of a black body takes as the blackbody temperature changes, is often shown in this standard chromaticity space.

Planckian locus in the XYZ color space

CIE 1931 Standard Colorimetric Observer functions used to map blackbody spectra to XYZ coordinates CIE 1931 XYZ Color Matching Functions.svg
CIE 1931 Standard Colorimetric Observer functions used to map blackbody spectra to XYZ coordinates

In the CIE XYZ color space, the three coordinates defining a color are given by X, Y, and Z: [1]

where M(λ,T) is the spectral radiant exitance of the light being viewed, and X(λ), Y(λ) and Z(λ) are the color matching functions of the CIE standard colorimetric observer, shown in the diagram on the right, and λ is the wavelength. The Planckian locus is determined by substituting into the above equations the black body spectral radiant exitance, which is given by Planck's law:

where:

c1 = 2πhc2 is the first radiation constant
c2 = hc/k is the second radiation constant

and

M is the black body spectral radiant exitance (power per unit area per unit wavelength: watt per square meter per meter (W/m3))
T is the temperature of the black body
h is the Planck constant
c is the speed of light
k is the Boltzmann constant

This will give the Planckian locus in CIE XYZ color space. If these coordinates are XT, YT, ZT where T is the temperature, then the CIE chromaticity coordinates will be

Note that in the above formula for Planck's Law, you might as well use c1L = 2hc2 (the first radiation constant for spectral radiance) instead of c1 (the “regular” first radiation constant), in which case the formula would give the spectral radiance L(λ,T) of the black body instead of the spectral radiant exitance M(λ,T). However, this change only affects the absolute values of XT, YT and ZT, not the values relative to each other. Since XT, YT and ZT are usually normalized to YT = 1 (or YT = 100) and are normalized when xT and yT are calculated, the absolute values of XT, YT and ZT do not matter. For practical reasons, c1 might therefore simply be replaced by 1.

Approximation

The Planckian locus in xy space is depicted as a curve in the chromaticity diagram above. While it is possible to compute the CIE xy co-ordinates exactly given the above formulas, it is faster to use approximations. Since the mired scale changes more evenly along the locus than the temperature itself, it is common for such approximations to be functions of the reciprocal temperature. Kim et al. use a cubic spline: [2] [3]

Kim et al.'s approximation to the Planckian locus (shown in red). The notches demarcate the three splines (shown in blue). Planckian-locus-approximation.png
Kim et al.'s approximation to the Planckian locus (shown in red). The notches demarcate the three splines (shown in blue).
Animation showing an approximation of the color of the Planckian Locus through the visible spectrum Planck locus.gif
Animation showing an approximation of the color of the Planckian Locus through the visible spectrum

The Planckian locus can also be approximated in the CIE 1960 color space, which is used to compute CCT and CRI, using the following expressions: [4]

This approximation is accurate to within and for . Alternatively, one can use the chromaticity (x, y) coordinates estimated from above to derive the corresponding (u, v), if a larger range of temperatures is required.

The inverse calculation, from chromaticity co-ordinates (x, y) on or near the Planckian locus to correlated color temperature, is discussed in Correlated color temperature § Approximation .

Correlated color temperature

The correlated color temperature (Tcp) is the temperature of the Planckian radiator whose perceived colour most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions

CIE/IEC 17.4:1987, International Lighting Vocabulary ( ISBN   3900734070) [5]

The mathematical procedure for determining the correlated color temperature involves finding the closest point to the light source's white point on the Planckian locus. Since the CIE's 1959 meeting in Brussels, the Planckian locus has been computed using the CIE 1960 color space, also known as MacAdam's (u,v) diagram. [6] Today, the CIE 1960 color space is deprecated for other purposes: [7]

The 1960 UCS diagram and 1964 Uniform Space are declared obsolete recommendation in CIE 15.2 (1986), but have been retained for the time being for calculating colour rendering indices and correlated colour temperature.

Owing to the perceptual inaccuracy inherent to the concept, it suffices to calculate to within 2 K at lower CCTs and 10 K at higher CCTs to reach the threshold of imperceptibility. [8]

Close up of the CIE 1960 UCS. The isotherms are perpendicular to the Planckian locus, and are drawn to indicate the maximum distance from the locus that the CIE considers the correlated color temperature to be meaningful:
D
u
v
=
+-
0.05
{\displaystyle \Delta _{uv}=\pm 0.05} Planckian-locus.png
Close up of the CIE 1960 UCS. The isotherms are perpendicular to the Planckian locus, and are drawn to indicate the maximum distance from the locus that the CIE considers the correlated color temperature to be meaningful:

International Temperature Scale

The Planckian locus is derived by the determining the chromaticity values of a Planckian radiator using the standard colorimetric observer. The relative spectral power distribution (SPD) of a Planckian radiator follows Planck's law, and depends on the second radiation constant, . As measuring techniques have improved, the General Conference on Weights and Measures has revised its estimate of this constant, with the International Temperature Scale (and briefly, the International Practical Temperature Scale). These successive revisions caused a shift in the Planckian locus and, as a result, the correlated color temperature scale. Before ceasing publication of standard illuminants, the CIE worked around this problem by explicitly specifying the form of the SPD, rather than making references to black bodies and a color temperature. Nevertheless, it is useful to be aware of previous revisions in order to be able to verify calculations made in older texts: [9] [10]

See also

Related Research Articles

<span class="mw-page-title-main">Wien's displacement law</span> Relation between peak wavelengths of black body radiation and temperature

In physics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law, which describes the spectral brightness or intensity of black-body radiation as a function of wavelength at any given temperature. However, it had been discovered by German physicist Wilhelm Wien several years before Max Planck developed that more general equation, and describes the entire shift of the spectrum of black-body radiation toward shorter wavelengths as temperature increases.

The RGB chromaticity space, two dimensions of the normalized RGB space, is a chromaticity space, a two-dimensional color space in which there is no intensity information.

<span class="mw-page-title-main">Color rendering index</span> Measure of ability of a light source to reproduce colors in comparison with a standard light source

A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Correlated color temperature</span> Property of light based on human perception

Correlated color temperature refers to the temperature of a Planckian radiator whose perceived color most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions."

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

In 1931 the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and the visual sensation of specific colors by human color vision. The CIE color spaces are mathematical models that create a "standard observer", which attempts to predict the perception of unique hues of color. These color spaces are essential tools that provide the foundation for measuring color for industry, including inks, dyes, and paints, illumination, color imaging, etc. The CIE color spaces contributed to the development of color television, the creation of instruments for maintaining consistent color in manufacturing processes, and other methods of color management.

<span class="mw-page-title-main">LMS color space</span> Color space represented by the response of the three types of cones of the human eye

LMS, is a color space which represents the response of the three types of cones of the human eye, named for their responsivity (sensitivity) peaks at long, medium, and short wavelengths.

<span class="mw-page-title-main">Mired</span> Unit of reciprocal color temperature

Contracted from the term micro reciprocal degree, the mired is a unit of measurement used to express color temperature. Values in mireds are calculated by the formula:

<span class="mw-page-title-main">Standard illuminant</span> Theoretical source of visible light

A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting.

The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets and is always close to the expected number of edges between them in a random -regular graph, namely .

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIE 1960 color space</span>

The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Vibrations of a circular membrane</span> Equations of waves in a drumhead-like disc

A two-dimensional elastic membrane under tension can support transverse vibrations. The properties of an idealized drumhead can be modeled by the vibrations of a circular membrane of uniform thickness, attached to a rigid frame. Due to the phenomenon of resonance, at certain vibration frequencies, its resonant frequencies, the membrane can store vibrational energy, the surface moving in a characteristic pattern of standing waves. This is called a normal mode. A membrane has an infinite number of these normal modes, starting with a lowest frequency one called the fundamental mode.

In statistics and machine learning, lasso is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model. The lasso method assumes that the coefficients of the linear model are sparse, meaning that few of them are non-zero. It was originally introduced in geophysics, and later by Robert Tibshirani, who coined the term.

<span class="mw-page-title-main">Poisson distribution</span> Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.

The Bennett acceptance ratio method (BAR) is an algorithm for estimating the difference in free energy between two systems . It was suggested by Charles H. Bennett in 1976.

In physics, the Sakuma–Hattori equation is a mathematical model for predicting the amount of thermal radiation, radiometric flux or radiometric power emitted from a perfect blackbody or received by a thermal radiation detector.

In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has a non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or a real constant, but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions.

References

  1. Wyszecki, Günter & Stiles, Walter Stanley (2000). Color Science: Concepts and Methods, Quantitative Data and Formulae (2E ed.). Wiley-Interscience. ISBN   0-471-39918-3.
  2. USpatent 7024034,Kim et al.,"Color Temperature Conversion System and Method Using the Same",issued 2006-04-04
  3. Bongsoon Kang; Ohak Moon; Changhee Hong; Honam Lee; Bonghwan Cho; Youngsun Kim (December 2002). "Design of Advanced Color Temperature Control System for HDTV Applications" (PDF). Journal of the Korean Physical Society. 41 (6): 865–871. S2CID   4489377. Archived from the original (PDF) on 2019-03-03.
  4. Krystek, Michael P. (January 1985). "An algorithm to calculate correlated colour temperature". Color Research & Application. 10 (1): 38–40. doi:10.1002/col.5080100109. A new algorithm to calculate correlated colour temperature is given. This algorithm is based on a rational Chebyshev approximation of the Planckian locus in the CIE 1960 UCS diagram and a bisection procedure. Thus time-consuming search procedures in tables or charts are no longer necessary.
  5. Borbély, Ákos; Sámson,Árpád; Schanda, János (December 2001). "The concept of correlated colour temperature revisited". Color Research & Application. 26 (6): 450–457. doi:10.1002/col.1065. Archived from the original on 2009-02-05.
  6. Kelly, Kenneth L. (August 1963). "Lines of constant correlated color temperature based on MacAdam's (u,v) Uniform chromaticity transformation of the CIE diagram". JOSA . 53 (8): 999. Bibcode:1963JOSA...53..999K. doi:10.1364/JOSA.53.000999.
  7. Simons, Ronald Harvey; Bean, Arthur Robert (2001). Lighting Engineering: Applied Calculations. Architectural Press. ISBN   0-7506-5051-6.
  8. Ohno, Yoshi; Jergens, Michael (19 June 1999). "Results of the Intercomparison of Correlated Color Temperature Calculation" (PDF). CORM. Archived from the original (PDF) on 30 September 2006.
  9. Janos Schanda (2007). "3: CIE Colorimetry". Colorimetry: Understanding the CIE System. Wiley Interscience. pp. 37–46. ISBN   978-0-470-04904-4.
  10. "The ITS-90 Resource Site". Archived from the original on 2008-02-21. Retrieved 2008-02-20.
  11. Hall, J.A. (January 1967). "The Early History of the International Practical Scale of Temperature". Metrologia. 3 (1): 25–28. doi:10.1088/0026-1394/3/1/006.
  12. Moon, Parry (March 1948). "A table of Planckian radiation". JOSA . 38 (3): 291–294. doi:10.1364/JOSA.38.000291. PMID   18903298.
  13. Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2012). "CODATA Recommended Values of the Fundamental Physical Constants: 2010" (PDF).
  14. Mohr, Peter J. (2016-09-26). "CODATA recommended values of the fundamental physical constants: 2014". Reviews of Modern Physics. 88 (3): 035009. arXiv: 1507.07956 . Bibcode:2016RvMP...88c5009M. doi:10.1103/RevModPhys.88.035009. S2CID   1115862.
  15. Mohr, Peter J.; Newell, David B.; Taylor, Barry N. (2016-11-22). "CODATA Recommended Values of the Fundamental Physical Constants: 2014". Journal of Physical and Chemical Reference Data. 45 (4): 043102. arXiv: 1507.07956 . Bibcode:2016JPCRD..45d3102M. doi:10.1063/1.4954402. ISSN   0047-2689.
  16. "2018 CODATA Value: second radiation constant – The NIST Reference on Constants, Units, and Uncertainty" . Retrieved 2020-01-17.