Tridecane

Last updated

Contents

Tridecane
Tridecane.svg
Tridecane 3D ball-and-stick model.png
Names
Preferred IUPAC name
Tridecane [1]
Identifiers
3D model (JSmol)
1733089
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.010.086 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-093-4
KEGG
MeSH tridecane
PubChem CID
RTECS number
  • YD3025000
UNII
  • InChI=1S/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H3 Yes check.svgY
    Key: IIYFAKIEWZDVMP-UHFFFAOYSA-N Yes check.svgY
  • CCCCCCCCCCCCC
Properties
C13H28
Molar mass 184.367 g·mol−1
AppearanceColourless liquid
Odor Gasoline-like to odorless
Density 0.756 g mL−1
Melting point −6 to −4 °C; 21 to 25 °F; 267 to 269 K
Boiling point 232 to 236 °C; 449 to 457 °F; 505 to 509 K
log P 7.331
Vapor pressure 100 kPa (at 59.4 °C)
4.3 nmol Pa−1 kg−1
1.425
Thermochemistry
406.89 J K−1 mol−1
−379.3–−376.1 kJ mol−1
−8.7411–−8.7383 MJ mol−1
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P305+P351+P338
Flash point 94 °C (201 °F; 367 K)
Lethal dose or concentration (LD, LC):
1.161 g kg−1(intravenous, mouse)
Related compounds
Related alkanes
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tridecane or n-tridecane is an alkane with the chemical formula CH3(CH2)11CH3. Tridecane is a combustible colourless liquid. In industry, they have no specific value aside from being components of various fuels and solvents. In the research laboratory, tridecane is also used as a distillation chaser.

Natural occurrence

Nymphs of the southern green shield bug produce tridecane as a dispersion/aggregation pheromone, which possibly serves as a defense against predators. [2] It is also the main component of the defensive fluid produced by the stink bug Cosmopepla bimaculata . [3]

See also

Related Research Articles

Alkane Type of chemical compound

In organic chemistry, an alkane, or paraffin, is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. Alkanes have the general chemical formula CnH2n+2. The alkanes range in complexity from the simplest case of methane, where n = 1, to arbitrarily large and complex molecules, like pentacontane or 6-ethyl-2-methyl-5-(1-methylethyl) octane, an isomer of tetradecane.

Alkene Hydrocarbon compound containing one or more carbon-carbon double bonds

In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond.

Heptane Chemical compound

Heptane or n-heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16, and is one of the main components of gasoline (petrol). When used as a test fuel component in anti-knock test engines, a 100% heptane fuel is the zero point of the octane rating scale (the 100 point is 100% iso-octane). Octane number equates to the anti-knock qualities of a comparison mixture of heptane and isooctane which is expressed as the percentage of isooctane in heptane and is listed on pumps for gasoline (petrol) dispensed globally.

Decane is an alkane hydrocarbon with the chemical formula C10H22. Although 75 structural isomers are possible for decane, the term usually refers to the normal-decane ("n-decane"), with the formula CH3(CH2)8CH3. All isomers, however, exhibit similar properties and little attention is paid to the composition. These isomers are flammable liquids. Decane is a component of gasoline (petrol) and kerosene. Like other alkanes, it is a nonpolar solvent, and does not dissolve in water, and is readily combustible. Although it is a component of fuels, it is of little importance as a chemical feedstock, unlike a handful of other alkanes.

Cyclopropane Chemical compound

Cyclopropane is the cycloalkane with the molecular formula (CH2)3, consisting of three methylene groups (CH2) linked to each other to form a ring. The small size of the ring creates substantial ring strain in the structure. Cyclopropane itself is mainly of theoretical interest but many of its derivatives are of commercial or biological significance.

Pentatomidae Family of insects

Pentatomidae is a family of insects belonging to the order Hemiptera, generally called shield bugs or stink bugs. Pentatomidae is the largest family in the superfamily Pentatomoidea, and contains around 900 genera and over 4700 species. As hemipterans, the pentatomids have piercing sucking mouthparts, and most are phytophagous, including several species which are severe pests on agricultural crops. However, some species, particularly in the subfamily Asopinae, are predatory and may be considered beneficial.

Pentane Alkane with 5 carbon atoms

Pentane is an organic compound with the formula C5H12—that is, an alkane with five carbon atoms. The term may refer to any of three structural isomers, or to a mixture of them: in the IUPAC nomenclature, however, pentane means exclusively the n-pentane isomer; the other two are called isopentane (methylbutane) and neopentane (dimethylpropane). Cyclopentane is not an isomer of pentane because it has only 10 hydrogen atoms where pentane has 12.

Dehydrogenation is the chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation. Dehydrogenation is important, both as a useful reaction and a serious problem. At its simplest, it is useful way of converting alkanes, which are relatively inert and thus low-valued, to olefins, which are reactive and thus more valuable. Alkenes are precursors to aldehydes, alcohols, polymers, and aromatics. As a problematic reaction, the fouling and inactivation of many catalysts arises via coking, which is the dehydrogenative polymerization of organic substrates.

An organochloride, organochlorine compound, chlorocarbon, or chlorinated hydrocarbon is an organic compound containing at least one covalently bonded atom of chlorine. The chloroalkane class provides common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.

In chemistry, homogeneous catalysis is catalysis by a soluble catalyst in a solution. Homogeneous catalysis refers to reactions where the catalyst is in the same phase as the reactants, principally in solution. In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid-gas, respectively. The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts.

Bent bond Type of covalent bond in organic chemistry

In organic chemistry, a bent bond, also known as a banana bond, is a type of covalent chemical bond with a geometry somewhat reminiscent of a banana. The term itself is a general representation of electron density or configuration resembling a similar "bent" structure within small ring molecules, such as cyclopropane (C3H6) or as a representation of double or triple bonds within a compound that is an alternative to the sigma and pi bond model.

<i>p</i>-Cresol Chemical compound

para-Cresol, also 4-methylphenol, is an organic compound with the formula CH3C6H4(OH). It is a colourless solid that is widely used intermediate in the production of other chemicals. It is a derivative of phenol and is an isomer of o-cresol and m-cresol.

In chemistry, a carbonium ion is any cation that has a pentavalent carbon atom. The name carbonium may also be used for the simplest member of the class, properly called methanium, where the five valences are filled with hydrogen atoms.

Bisabolene Chemical compound

Bisabolenes are a group of closely related natural chemical compounds which are classified as sesquiterpenes. Bisabolenes are produced from farnesyl pyrophosphate (FPP) and are present in the essential oils of bisabol, and of a wide variety of other plants including cubeb, lemon, and oregano. Various derivates also function as pheromones in different insects, such as stink bugs and fruit flies. Bisabolenes are produced by several fungi, though their biological role in that group of organisms remains unclear.

<i>Calliphara nobilis</i> Species of jewel bug

Calliphara nobilis is a species of jewel bug found in Asia. Like all species of jewel bugs, it is phytophagous, feeding on the leaves, fruit and seeds of its host plants. This insect is notable for its multiple defense mechanisms: it is highly mobile and swarms disperse with a loud buzz when disturbed; it is aposematically colored, which serves as a warning to any would-be predators that it is unpalatable; and it possesses a robust chemical defense mechanism: it can secrete an irritating and toxic fluid from a pair of metathoracic scent glands when threatened.

Chemical defense

Chemical defense is a life history strategy employed by many organisms to avoid consumption by producing toxic or repellent metabolites. The production of defensive chemicals occurs in plants, fungi, and bacteria, as well as invertebrate and vertebrate animals. The class of chemicals produced by organisms that are considered defensive may be considered in a strict sense to only apply to those aiding an organism in escaping herbivory or predation. However, the distinction between types of chemical interaction is subjective and defensive chemicals may also be considered to protect against reduced fitness by pests, parasites, and competitors. Many chemicals used for defensive purposes are secondary metabolites derived from primary metabolites which serve a physiological purpose in the organism. Secondary metabolites produced by plants are consumed and sequestered by a variety of arthropods and, in turn, toxins found in some amphibians, snakes, and even birds can be traced back to arthropod prey. There are a variety of special cases for considering mammalian antipredatory adaptations as chemical defenses as well.

<i>Cosmopepla lintneriana</i> Species of true bug

Cosmopepla lintneriana, the twice-stabbed stink bug, locally called the wee harlequin bug, is a species of insect in the family Pentatomidae. Cosmopepla lintneriana was first described in 1798 by Johan Christian Fabricius as Cimex carnifex, and then again in 1865 by Thomas Say as Cosmopepla bimaculata. Cosmopepla lintneriana is hosted by a variety of plants, including milk thistle, echinacea, asparagus, oats, mint and goldenrod, and is widespread throughout North America, from Canada to Mexico. Adult C. lintneriana are black with a red, orange, or yellow band across the pronotum and a short red stripe along the midline, and two red spots at the apex of the scutellum. Nymph coloration ranges from red to white with black markings that change as they grow.

<i>Coridius janus</i> Species of true bug

Coridius janus sometimes known as the red pumpkin bug is a species of bug in the family Dinidoridae. It feeds by sucking on the sap on soft parts of plants especially in the cucurbit family and causes damage to crops.

2,3-Dimethylpentane Chemical compound

2,3-Dimethylpentane is an organic compound of carbon and hydrogen with formula C
7
H
16
, more precisely CH
3
CH(CH
3
)
CH(CH
3
)
CH
2
CH
3
: a molecule of pentane with methyl groups –CH
3
replacing hydrogen atoms on carbon atoms 2 and 3. It is an alkane, a fully saturated hydrocarbon; specifically, one of the isomers of heptane.

Hydrocarbonoclastic bacteria are a heterogeneous group of prokaryotes which can degrade and utilize hydrocarbon compounds as source of carbon and energy. Despite being present in most of environments around the world, several of these specialized bacteria live in the sea and have been isolated from polluted seawater.

References

  1. "tridecane – Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 16 September 2004. Identification. Retrieved 4 January 2012.
  2. Todd, J. W. (1989). "Ecology and behavior of Nezara viridula". Annual Review of Entomology. 34: 273–292(20). doi:10.1146/annurev.en.34.010189.001421.
  3. Krall, Brian S.; Bartelt, Robert J.; Lewis, Cara J.; Whitman, Douglas W. (1999). "Chemical Defense in the Stink Bug Cosmopepla bimaculata". Journal of Chemical Ecology. 25 (11): 2477–94(18). doi:10.1023/A:1020822107806.