Higher alkane

Last updated
Tetracosane is a representative higher alkane Tetracosane structure.png
Tetracosane is a representative higher alkane

Higher alkanes are alkanes with a high number of carbon atoms. It is common jargon. [1] One definition says higher alkanes are alkanes having nine or more carbon atoms. Thus, according to this definition, nonane is the lightest higher alkane. [2] As pure substances, higher alkanes are rarely significant, but they are major components of useful lubricants and fuels. [3]

Contents

Synthesis

The preparation of specific long-chain hydrocarbons typically involves manipulations of long chain precursors or the coupling of two medium-chain components. For the first case, fatty acids can be a source of higher alkanes via decarboxylation reaction. Such processes have been investigated as a route to biodiesel. [4]

Fatty acid esters and fatty acid nitriles react with long chain Grignard reagents to give, after suitable workup, long-chain ketones. The Wolff-Kishner Reaction provides a way to remove the ketone functionality, giving long-chain hydrocarbons. [1]

Even-numbered, long-chain hydrocarbons can also be synthesized through electrolysis [5] and the Wurtz reactions of alkyl bromides.

Occurrence

Higher alkanes can also be isolated and purified from natural or synthetic mixtures. Coal tar is a traditional source of mixtures of long-chain hydrocarbons. [3] Careful fractionation, first using urea clathrates to remove branched hydrocarbons, and then distillation, produces pure n-hydrocarbons from petroleum. [6]

Regarding synthetic sources, the Fischer-Tropsch process (or FT process) produces a mixture of hydrocarbons by the hydrogenation of carbon monoxide. The products obtained are liquid hydrocarbons and waxy solids, mostly n-paraffins. The liquid fraction ranges from C6 to C20, while the solid fraction consists of hydrocarbons above C21. [7]

Bioactivity

Some branched higher alkanes are insect pheromones. 9- and 7-methyltricosanes are active for ladybird beetles (Adalia bipunctata). [8] The emerald ash borer (Agrilus planipennis Fairmaire) responds to 9-methylpentacosane. [9] Female Asian long-horned beetles Anoplophora glabripennis, which are very damaging, secrete 2-methyldocosane. [10]

Reactions

Higher alkanes in general are relatively inert, just like low molecular weight alkanes they can react with oxygen and start a combustion reaction. They can undergo cracking in the presence of alumina or silica catalysts, forming lower alkanes and alkenes.

Uses

Alkanes from nonane to hexadecane (those alkanes with nine to sixteen carbon atoms) are liquids of higher viscosity, which are less suitable for use in gasoline. They form instead the major part of diesel, kerosene, and aviation fuel. Diesel fuels are characterised by their cetane number, cetane being an older name for hexadecane. However the higher melting points of these alkanes can cause problems at low temperatures and in polar regions, where the fuel becomes too thick to flow correctly. Mixtures of the normal alkanes are used as boiling point standards for simulated distillation by gas chromatography. [11]

Alkanes from hexadecane upwards form the most important components of fuel oil and lubricating oil. In latter function they work at the same time as anti-corrosive agents, as their hydrophobic nature means that water cannot reach the metal surface. Many solid alkanes find use as paraffin wax, used for lubrication, electrical insulation, and candles. Paraffin wax should not be confused with beeswax, which consists primarily of esters.

Alkanes with a chain length of approximately 30 or more carbon atoms are found in bitumen (asphalt), used (for example) in road surfacing. However, the higher alkanes have little value and are usually split into lower alkanes by cracking.

Names

Some alkanes have non-IUPAC trivial names:

Properties

Nonane is the lightest alkane to have a flash point above 25 °C, and is classified as flammable under the US National Library of Medicine. [13]

The properties listed here refer to the straight-chain alkanes (or: n-alkanes).

Nonane to hexadecane

This group of n-alkanes is generally liquid under standard conditions. [3]

Nonane Decane Undecane Dodecane Tridecane Tetradecane Pentadecane Hexadecane
Formula C9H20C10H22C11H24C12H26C13H28C14H30C15H32C16H34
CAS number [111-84-2][124-18-5][1120-21-4][112-40-3][629-50-5][629-59-4][629-62-9][544-76-3]
Molar mass (g/mol)128.26142.29156.31170.34184.37198.39212.42226.45
Melting point (°C)53.529.725.69.65.45.99.918.2
Boiling point (°C)150.8174.1195.9216.3235.4253.5270.6286.8
Density (g/ml at 20 °C)0.717630.730050.740240.748690.756220.762750.768300.77344
Viscosity (cP at 20 °C)0.71390.92561.1851.5031.8802.3352.8633.474
Flash point (°C)314660717999132135
Autoignition temperature (°C)205210205235201
Explosive limits 0.92.9%0.82.6%0.456.5%

Heptadecane to tetracosane

From this group on, the n-alkanes are generally solid at standard conditions.

Heptadecane Octadecane Nonadecane Eicosane Heneicosane DocosaneTricosane Tetracosane
Formula C17H36C18H38C19H40C20H42C21H44C22H46C23H48C24H50
CAS number [629-78-7][593-45-3][629-92-5][112-95-8][629-94-7][629-97-0][638-67-5][646-31-1]
Molar mass (g/mol)240.47254.50268.53282.55296.58310.61324.63338.66
Melting point (°C)212830323436.740.542485052
Boiling point (°C)302317330342.7356.5224 at 2 kPaa380391.3
Density (g/ml)0.7770.7770.7860.78860.7920.7780.7970.797
Flash point (°C)148166168176

a[ Should be quoted on a consistent basis ]

Pentacosane to triacontane

PentacosaneHexacosaneHeptacosaneOctacosane Nonacosane Triacontane
Formula C25H52C26H54C27H56C28H58C29H60C30H62
CAS number [629-99-2][630-01-3][593-49-7][630-02-4][630-03-5][638-68-6]
Molar mass (g/mol)352.69366.71380.74394.77408.80422.82
Melting point (°C)5456.459.564.563.765.8
Boiling point (°C)401412.2422431.6440.8449.7
Density (g/ml)0.8010.7780.7800.8070.8080.810

Hentriacontane to hexatriacontane

Hentriacontane DotriacontaneTritriacontaneTetratriacontanePentatriacontaneHexatriacontane
Formula C31H64C32H66C33H68C34H70C35H72C36H74
CAS number [630-04-6][544-85-4][630-05-7][14167-59-0][630-07-9][630-06-8]
Molar mass (g/mol)436.85450.88464.90478.93492.96506.98
Melting point (°C)67.969707272.6757476
Boiling point (°C)458467474285.4 at 0.4 kPa490265 at 130 Pa
Density (g/ml)0.781 at 68 °C [14] 0.8120.8110.8120.8130.814

Heptatriacontane to dotetracontane

HeptatriacontaneOctatriacontaneNonatriacontaneTetracontaneHentetracontaneDotetracontane
Formula C37H76C38H78C39H80C40H82C41H84C42H86
CAS number [7194-84-5][7194-85-6][7194-86-7][4181-95-7][7194-87-8][7098-20-6]
Molar mass (g/mol)520.99535.03549.05563.08577.11591.13
Melting point (°C)777978848386
Boiling point (°C)504.14510.93517.51523.88530.75536.07
Density (g/ml)0.8150.8160.8170.8170.8180.819

Tritetracontane to octatetracontane

TritetracontaneTetratetracontanePentatetracontaneHexatetracontaneHeptatetracontaneOctatetracontane
Formula C43H88C44H90C45H92C46H94C47H96C48H98
CAS number [7098-21-7][7098-22-8][7098-23-9][7098-24-0][7098-25-1][7098-26-2]
Molar mass (g/mol)605.15619.18633.21647.23661.26675.29
Boiling point (°C)541.91547.57553.1558.42563.6568.68
Density (g/ml)0.820.820.8210.8220.8220.823

Nonatetracontane to tetrapentacontane

NonatetracontanePentacontaneHenpentacontaneDopentacontaneTripentacontaneTetrapentacontane
Formula C49H100C50H102C51H104C52H106C53H108C54H110
CAS number [7098-27-3][6596-40-3][7667-76-7][7719-79-1][7719-80-4][5856-66-6]
Molar mass (g/mol)689.32703.34717.37731.39745.42759.45
Boiling point (°C)573.6578.4583587.6592596.38
Density (g/ml)0.8230.8240.8240.8250.8250.826

Pentapentacontane to hexacontane

PentapentacontaneHexapentacontaneHeptapentacontaneOctapentacontaneNonapentacontaneHexacontane
Formula C55H112C56H114C57H116C58H118C59H120C60H122
CAS number [5846-40-2][7719-82-6][5856-67-7][7667-78-9][7667-79-0][7667-80-3]
Molar mass (g/mol)773.48787.50801.53815.58829.59843.6
Boiling point (°C)600.6604.7 ?612.6 ?620.2
Density (g/ml)0.8260.826 ?0.827 ?0.827

See also

References

  1. 1 2 Whitmore, Frank C.; Herr, C. H.; Clarke, D. G.; Rowland, C. S.; Schiessler, Robert W. (1945). "Higher Hydrocarbons. III.2 the Wolff-Kishner Reaction". Journal of the American Chemical Society. 67 (12): 2059–2061. Bibcode:1945JAChS..67.2059W. doi:10.1021/ja01228a001.
  2. "Higher alkanes". Wartsila.com. Retrieved 2025-05-06.
  3. 1 2 3 Schmidt, Roland; Griesbaum, Karl; Behr, Arno; Biedenkapp, Dieter; Voges, Heinz-Werner; Garbe, Dorothea; Paetz, Christian; Collin, Gerd; Mayer, Dieter; Höke, Hartmut (2014). "Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–74. doi:10.1002/14356007.a13_227.pub3. ISBN   978-3-527-30673-2.
  4. Silva, Maria do S. B. da; Araujo, Jhudson G. L. de; Bento, Júlia C. C. V.; Azevedo, Amanda M. de; Souto, Carlos R. O.; Anjos, Aécia S. D. dos; Araújo, Aruzza M. M. de; Silva, Djalma R. da; Menezes, Fabrício G.; Gondim, Amanda D.; Cavalcanti, Lívia N. (2022). "Nickel-catalyzed reductive decarboxylation of fatty acids for drop-in biofuel production". RSC Advances. 12 (43): 27889–27894. Bibcode:2022RSCAd..1227889S. doi:10.1039/D2RA04057C. PMC   9521194 . PMID   36320252.
  5. Poizot, Philippe; Jouikov, Viatcheslav; Simonet, Jacques (2009). "Glassy carbon modified by a silver–palladium alloy: Cheap and convenient cathodes for the selective reductive homocoupling of alkyl iodides". Tetrahedron Letters. 50 (7): 822–824. doi:10.1016/j.tetlet.2008.12.008.
  6. Schaerer, A. A.; Busso, C. J.; Smith, A. E.; Skinner, L. B. (1955). "Properties of Pure Normal Alkanes in the C17 to C36 Range". Journal of the American Chemical Society. 77 (7): 2017–2019. Bibcode:1955JAChS..77.2017S. doi:10.1021/ja01612a097.
  7. Gruber, Hannes; Groß, Peter; Rauch, Reinhard; Reichhold, Alexander; Zweiler, Richard; Aichernig, Christian; Müller, Stefan; Ataimisch, Nabeel; Hofbauer, Hermann (December 2021). "Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen". Biomass Conversion and Biorefinery. 11 (6): 2281–2292. Bibcode:2021BioCB..11.2281G. doi:10.1007/s13399-019-00459-5.
  8. Hemptinne†, J.-L; Lognay, G.; Dixon, A.F.G (1998). "Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: Role of chemical and behavioural cues". Journal of Insect Physiology. 44 (12): 1163–1171. Bibcode:1998JInsP..44.1163H. doi:10.1016/s0022-1910(98)00081-x. PMID   12770316.
  9. Silk, Peter J.; Ryall, Krista; Barry Lyons, D.; Sweeney, Jon; Wu, Junping (2009). "A contact sex pheromone component of the emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)". Naturwissenschaften. 96 (5): 601–608. Bibcode:2009NW.....96..601S. doi:10.1007/s00114-009-0513-1. PMID   19238346.
  10. Hoover, Kelli; Keena, Melody; Nehme, Maya; Wang, Shifa; Meng, Peter; Zhang, Aijun (2014). "Sex-Specific Trail Pheromone Mediates Complex Mate Finding Behavior in Anoplophora glabripennis". Journal of Chemical Ecology. 40 (2): 169–180. Bibcode:2014JCEco..40..169H. doi:10.1007/s10886-014-0385-5. PMID   24510414.
  11. "Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Chromatography" (Document). ASTM. doi:10.1520/D5399-09R17. D5399-09(2017).
  12. Donald Mackay, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, ISBN   1420044397, p. 206
  13. "Nonane". PubChem. 26 October 2024.
  14. Weast, Robert C., ed. (1982). CRC Handbook of Chemistry and Physics (63rd ed.). Boca Raton, Fl: CRC Press. p. C-561.