Interstellar ice

Last updated

Interstellar ice consists of grains of volatiles in the ice phase that form in the interstellar medium. Ice and dust grains form the primary material out of which the Solar System was formed. Grains of ice are found in the dense regions of molecular clouds, where new stars are formed. Temperatures in these regions can be as low as 10  K (−263 °C; −442 °F), allowing molecules that collide with grains to form an icy mantle. Thereafter, atoms undergo thermal motion across the surface, eventually forming bonds with other atoms. This results in the formation of water and methanol. [1] Indeed, the ices are dominated by water and methanol, as well as ammonia, carbon monoxide and carbon dioxide. Frozen formaldehyde and molecular hydrogen may also be present. Found in lower abundances are nitriles, ketones, esters [2] and carbonyl sulfide. [1] The mantles of interstellar ice grains are generally amorphous, becoming crystalline only in the presence of a star. [3]

Contents

The composition of interstellar ice can be determined through its infrared spectrum. As starlight passes through a molecular cloud containing ice, molecules in the cloud absorb energy. This adsorption occurs at the characteristic frequencies of vibration of the gas and dust. Ice features in the cloud are relatively prominently in this spectra, and the composition of the ice can be determined by comparison with samples of ice materials on Earth. [4] In the sites directly observable from Earth, around 60–70% of the interstellar ice consists of water, which displays a strong emission at 3.05 μm from stretching of the O–H bond. [1]

In September 2012, NASA scientists reported that polycyclic aromatic hydrocarbons (PAHs), subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation and hydroxylation, to more complex organics - "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively". [5] [6] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains , particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks." [5] [6]

Older than the Sun

Research published in the journal Science estimates that about 30–50% of the water in the Solar System, like the water on Earth, the discs around Saturn, and the meteorites of other planets was present before the birth of the Sun. [7]

Comet 67P/Churyumov–Gerasimenko

On 18 November 2014, spacecraft Philae revealed presence of large amount of water ice on the comet 67P/Churyumov–Gerasimenko, the report stating that "the strength of the ice found under a layer of dust on the first landing site is surprisingly high". The team responsible for the MUPUS (Multi-Purpose Sensors for Surface and Sub-Surface Science) instrument, which hammered a probe into the comet, estimated that the comet is hard as ice. "Although the power of the hammer was gradually increased, we were not able to go deep into the surface," explained Tilman Spohn from the DLR Institute for Planetary Research, who led the research team. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Comet</span> Natural object in space that releases gas

A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are due to the effects of solar radiation and the solar wind acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently bright, a comet may be seen from Earth without the aid of a telescope and may subtend an arc of 30° across the sky. Comets have been observed and recorded since ancient times by many cultures and religions.

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the Universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<i>Stardust</i> (spacecraft) Fourth mission of the Discovery program; sample return from the periodic comet Wild 2

Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.

<span class="mw-page-title-main">81P/Wild</span> Periodic comet with six-year orbit

Comet 81P/Wild, also known as Wild 2, is a comet named after Swiss astronomer Paul Wild, who discovered it on January 6, 1978, using a 40-cm Schmidt telescope at Zimmerwald, Switzerland.

<span class="mw-page-title-main">Cosmochemistry</span> Study of the chemical composition of matter in the universe

Cosmochemistry or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.

<span class="mw-page-title-main">Tholin</span> Class of molecules formed by ultraviolet irradiation of organic compounds

Tholins are a wide variety of organic compounds formed by solar ultraviolet or cosmic ray irradiation of simple carbon-containing compounds such as carbon dioxide, methane or ethane, often in combination with nitrogen or water. Tholins are disordered polymer-like materials made of repeating chains of linked subunits and complex combinations of functional groups, typically nitriles and hydrocarbons and their degraded forms such as amines and phenyls. Tholins do not form naturally on modern-day Earth, but they are found in great abundance on the surfaces of icy bodies in the outer Solar System, and as reddish aerosols in the atmospheres of outer Solar System planets and moons.

<span class="mw-page-title-main">67P/Churyumov–Gerasimenko</span> Periodic contact binary comet

67P/Churyumov–Gerasimenko is a Jupiter-family comet, originally from the Kuiper belt, with a current orbital period of 6.45 years, a rotation period of approximately 12.4 hours and a maximum velocity of 135,000 km/h. Churyumov–Gerasimenko is approximately 4.3 by 4.1 km at its longest and widest dimensions. It was first observed on photographic plates in 1969 by Soviet astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom it is named. It most recently came to perihelion on 2 November 2021, and will next come to perihelion on 9 April 2028.

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars that lie near the plane of the Milky Way and are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies is roughly 1.8 magnitudes per kiloparsec.

<span class="mw-page-title-main">Accretion (astrophysics)</span> Accumulation of particles into a massive object by gravitationally attracting more matter

In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, in an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust and circumplanetary dust. There are several methods to obtain space dust measurement.

Amorphous ice is an amorphous solid form of water. Common ice is a crystalline material wherein the molecules are regularly arranged in a hexagonal lattice, whereas amorphous ice has a lack of long-range order in its molecular arrangement. Amorphous ice is produced either by rapid cooling of liquid water, or by compressing ordinary ice at low temperatures.

<span class="mw-page-title-main">Glycolaldehyde</span> Organic compound (HOCH2−CHO)

Glycolaldehyde is the organic compound with the formula HOCH2−CHO. It is the smallest possible molecule that contains both an aldehyde group and a hydroxyl group. It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide.

Comet dust refers to cosmic dust that originates from a comet. Comet dust can provide clues to comets' origin. When the Earth passes through a comet dust trail, it can produce a meteor shower.

<span class="mw-page-title-main">Comet nucleus</span> Central part of a comet

The nucleus is the solid, central part of a comet, once termed a dirty snowball or an icy dirtball. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere surrounding the nucleus known as the coma. The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous tail to form, which points away from the Sun. A typical comet nucleus has an albedo of 0.04. This is blacker than coal, and may be caused by a covering of dust.

<span class="mw-page-title-main">PAH world hypothesis</span> Hypothesis about the origin of life

The PAH world hypothesis is a speculative hypothesis that proposes that polycyclic aromatic hydrocarbons (PAHs), known to be abundant in the universe, including in comets, and assumed to be abundant in the primordial soup of the early Earth, played a major role in the origin of life by mediating the synthesis of RNA molecules, leading into the RNA world. However, as yet, the hypothesis is untested.

Sagittarius B2 is a giant molecular cloud of gas and dust that is located about 120 parsecs (390 ly) from the center of the Milky Way. This complex is the largest molecular cloud in the vicinity of the core and one of the largest in the galaxy, spanning a region about 45 parsecs (150 ly) across. The total mass of Sgr B2 is about 3 million times the mass of the Sun. The mean hydrogen density within the cloud is 3000 atoms per cm3, which is about 20–40 times denser than a typical molecular cloud.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

Interstellar formaldehyde (a topic relevant to astrochemistry) was first discovered in 1969 by L. Snyder et al. using the National Radio Astronomy Observatory. Formaldehyde (H2CO) was detected by means of the 111 - 110 ground state rotational transition at 4830 MHz. On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).

Pseudo-panspermia is a well-supported hypothesis for a stage in the origin of life. The theory first asserts that many of the small organic molecules used for life originated in space. It continues that these organic molecules were distributed to planetary surfaces, where life then emerged on Earth and perhaps on other planets. Pseudo-panspermia differs from the fringe theory of panspermia, which asserts that life arrived on Earth from distant planets.

References

  1. 1 2 3 Gibb, E. L.; et al. (March 2004), "eInterstellar Ice: The Infrared Space Observatory Legacy", The Astrophysical Journal Supplement Series, 151 (1): 35–73, Bibcode:2004ApJS..151...35G, doi: 10.1086/381182
  2. Allamandola, Louis J.; Bernstein, Max P.; Sandford, Scott A.; Walker, Robert L. (October 1999). "Evolution of Interstellar Ices". Space Science Reviews. 90 (1/2): 219–232. Bibcode:1999SSRv...90..219A. doi:10.1023/A:1005210417396. PMID   11543288. S2CID   189766820.
  3. Greenberg, J. Mayo (1991). "Interstellar Dust-Gas Relationships". In Maurice Mandel Shapiro; Rein Silberberg; J. P. Wefel (eds.). Cosmic rays, supernovae, and the interstellar medium. NATO ASI series: Mathematical and physical sciences. Springer. p. 58. ISBN   978-0-7923-1278-9.
  4. Pirronello, Valerio; Krełowski, Jacek; Manicò, Giulio; North Atlantic Treaty Organization. Scientific Affairs Division (2003). Solid state astrochemistry. NATO science series: Mathematics, physics, and chemistry. Vol. 120. Springer. p. 288. ISBN   978-1-4020-1559-5.
  5. 1 2 Staff (September 20, 2012). "NASA Cooks Up Icy Organics to Mimic Life's Origins". Space.com . Retrieved September 22, 2012.
  6. 1 2 Gudipati, Murthy S.; Yang, Rui (September 1, 2012). "In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies". The Astrophysical Journal Letters . 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. S2CID   5541727.
  7. "50% of Earth's water older than the [[Sun]] and came from interstellar ice, research says". Archived from the original on 2014-12-02. Retrieved 2014-11-24.
  8. Philae reveals presence of large amount of water ice on the comet