SLC22A8

Last updated
SLC22A8
Identifiers
Aliases SLC22A8 , OAT3, solute carrier family 22 member 8
External IDs OMIM: 607581 MGI: 1336187 HomoloGene: 20901 GeneCards: SLC22A8
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001184732
NM_001184733
NM_001184736
NM_004254

NM_001164634
NM_001164635
NM_031194

RefSeq (protein)

NP_001171661
NP_001171662
NP_001171665
NP_004245

NP_001158106
NP_001158107
NP_112471

Location (UCSC) Chr 11: 62.99 – 63.02 Mb Chr 19: 8.57 – 8.59 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Solute carrier family 22 member 8, or organic anion transporter 3 (OAT3), is a protein that in humans is encoded by the SLC22A8 gene. [5] [6] [7]

Contents

Function

OAT3 is involved in the transport and excretion of organic ions some of which are drugs (e.g., penicillin G (benzylpenicillin), methotrexate (MTX), indomethacin (an NSAID), and ciprofloxacin (a fluoroquinolone antibiotic)) and some of which are pure toxicants. [6] SLC22A8 (OAT3) is indirectly dependent on the inward sodium gradient, which is a driving force for reentry of dicarboxylates into the cytosol. Dicarboxylates, such as alpha-ketoglutarate generated within the cell, or recycled from the extracellular space, are used as exchange substrates to fuel the influx of organic anions against their concentration gradient. The encoded protein is an integral membrane protein and appears to be localized to the basolateral membrane of renal proximal tubule cells. [7]

Related Research Articles

<span class="mw-page-title-main">SLC22A5</span> Protein-coding gene in the species Homo sapiens

SLC22A5 is a membrane transport protein associated with primary carnitine deficiency. This protein is involved in the active cellular uptake of carnitine. It acts a symporter, moving sodium ions and other organic cations across the membrane along with carnitine. Such polyspecific organic cation transporters in the liver, kidney, intestine, and other organs are critical for the elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. Mutations in the SLC22A5 gene cause systemic primary carnitine deficiency, which can lead to heart failure.

<span class="mw-page-title-main">Neuropeptide Y receptor Y5</span> Protein-coding gene in the species Homo sapiens

Neuropeptide Y receptor type 5 is a protein that in humans is encoded by the NPY5R gene.

<span class="mw-page-title-main">Multidrug resistance-associated protein 2</span> Protein-coding gene in the species Homo sapiens

Multidrug resistance-associated protein 2 (MRP2) also called canalicular multispecific organic anion transporter 1 (cMOAT) or ATP-binding cassette sub-family C member 2 (ABCC2) is a protein that in humans is encoded by the ABCC2 gene.

<span class="mw-page-title-main">SLC22A4</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22, member 4, also known as SLC22A4, is a human gene; the encoded protein is known as the ergothioneine transporter.

<span class="mw-page-title-main">Solute carrier organic anion transporter family member 1B1</span> Protein-coding gene in the species Homo sapiens

Solute carrier organic anion transporter family member 1B1 is a protein that in humans is encoded by the SLCO1B1 gene. Pharmacogenomic research indicates that genetic variations in this gene are associated with response to simvastatin. Clinical guidelines exist that can guide dosing of simvastatin based on SLCO1B1 gene variant using genotyping or whole exome sequencing.

<span class="mw-page-title-main">Equilibrative nucleoside transporter 2</span> Protein-coding gene in the species Homo sapiens

Equilibrative nucleoside transporter 2 (ENT2) is a protein that in humans is encoded by the SLC29A2 gene.

<span class="mw-page-title-main">SLC22A3</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 3 (SLC22A3) also known as the organic cation transporter 3 (OCT3) or extraneuronal monoamine transporter (EMT) is a protein that in humans is encoded by the SLC22A3 gene.

<span class="mw-page-title-main">SLC22A11</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 11 is a protein that in humans is encoded by the SLC22A11 gene.

<span class="mw-page-title-main">Solute carrier organic anion transporter family member 1B3</span> Protein-coding gene in the species Homo sapiens

Solute carrier organic anion transporter family member 1B3 (SLCO1B3) also known as organic anion-transporting polypeptide 1B3 (OATP1B3) is a protein that in humans is encoded by the SLCO1B3 gene.

<span class="mw-page-title-main">SLC15A2</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 15, member 2, also known as SLC15A2, is a human gene.

<span class="mw-page-title-main">Solute carrier organic anion transporter family member 2B1</span> Protein-coding gene in the species Homo sapiens

Solute carrier organic anion transporter family member 2B1 also known as organic anion-transporting polypeptide 2B1 (OATP2B1) is a protein that in humans is encoded by the gene SLCO2B1.

<span class="mw-page-title-main">SLC22A7</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 7 is a protein that in humans is encoded by the gene SLC22A7.

<span class="mw-page-title-main">SLC22A9</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 9 is a protein that in humans is encoded by the SLC22A9 gene.

<span class="mw-page-title-main">Organic anion transporter 1</span> Protein-coding gene in the species Homo sapiens

The organic anion transporter 1 (OAT1) also known as solute carrier family 22 member 6 (SLC22A6) is a protein that in humans is encoded by the SLC22A6 gene. It is a member of the organic anion transporter (OAT) family of proteins. OAT1 is a transmembrane protein that is expressed in the brain, the placenta, the eyes, smooth muscles, and the basolateral membrane of proximal tubular cells of the kidneys. It plays a central role in renal organic anion transport. Along with OAT3, OAT1 mediates the uptake of a wide range of relatively small and hydrophilic organic anions from plasma into the cytoplasm of the proximal tubular cells of the kidneys. From there, these substrates are transported into the lumen of the nephrons of the kidneys for excretion. OAT1 homologs have been identified in rats, mice, rabbits, pigs, flounders, and nematodes.

<span class="mw-page-title-main">3,4-Dichloroamphetamine</span> Chemical compound

3,4-Dichloroamphetamine (DCA), is an amphetamine derived drug invented by Eli Lilly in the 1960s, which has a number of pharmacological actions. It acts as a highly potent and selective serotonin releasing agent (SSRA) and binds to the serotonin transporter with high affinity, but also acts as a selective serotonergic neurotoxin in a similar manner to the related para-chloroamphetamine, though with slightly lower potency. It is also a monoamine oxidase inhibitor (MAOI), as well as a very potent inhibitor of the enzyme phenylethanolamine N-methyl transferase which normally functions to transform noradrenaline into adrenaline in the body.

<span class="mw-page-title-main">Clorotepine</span> Antipsychotic medication

Clorotepine, also known as octoclothepin or octoclothepine, is an antipsychotic of the tricyclic group which was derived from perathiepin in 1965 and marketed in the Czech Republic by Spofa in or around 1971 for the treatment of schizophrenic psychosis.

A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.

<span class="mw-page-title-main">Eluxadoline</span> Chemical compound

Eluxadoline, sold under the brand names Viberzi and Truberzi, is a medication taken by mouth for the treatment of diarrhea and abdominal pain in individuals with diarrhea-predominant irritable bowel syndrome (IBS-D). It was approved for use in the United States in 2015. The drug originated from Janssen Pharmaceutica and was developed by Actavis.

<span class="mw-page-title-main">Proton-coupled folate transporter</span> Mammalian protein found in Homo sapiens

The proton-coupled folate transporter is a protein that in humans is encoded by the SLC46A1 gene. The major physiological roles of PCFTs are in mediating the intestinal absorption of folate, and its delivery to the central nervous system.

Stephen H. Wright is an American physiologist. He is primarily known for his work on the mechanisms of organic solute transport in kidney tubules, but he is also known for work to describe transport of organic solutes across epithelial membranes by marine invertebrates.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000149452 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063796 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Race JE, Grassl SM, Williams WJ, Holtzman EJ (1999). "Molecular Cloning and Characterization of Two Novel Human Renal Organic Anion Transporters (hOAT1 and hOAT3)". Biochemical and Biophysical Research Communications. 255 (2): 508–14. doi:10.1006/bbrc.1998.9978. PMID   10049739.
  6. 1 2 VanWert AL, Gionfriddo MR, Sweet DH (2009). "Organic anion transporters: Discovery, pharmacology, regulation and roles in pathophysiology". Biopharmaceutics & Drug Disposition. 31 (1): 1–71. doi: 10.1002/bdd.693 . PMID   19953504.
  7. 1 2 EntrezGene 9376

Further reading