SLC5A4

Last updated
SLC5A4
Identifiers
Aliases SLC5A4 , DJ90G24.4, SAAT1, SGLT3, solute carrier family 5 member 4
External IDs HomoloGene: 8591 GeneCards: SLC5A4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014227

n/a

RefSeq (protein)

NP_055042

n/a

Location (UCSC) Chr 22: 32.22 – 32.26 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

The low affinity sodium-glucose cotransporter also known as the sodium/glucose cotransporter 3 (SGLT3) or solute carrier family 5 member 4 (SLC5A4) is a protein that in humans is encoded by the SLC5A4 gene. [3] [4] [5] It functions as a sugar sensor.

Related Research Articles

In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement. There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient.

<span class="mw-page-title-main">Cotransporter</span>

Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport and include antiporters and symporters. In general, cotransporters consist of two out of the three classes of integral membrane proteins known as transporters that move molecules and ions across biomembranes. Uniporters are also transporters but move only one type of molecule down its concentration gradient and are not classified as cotransporters.

The solute carrier (SLC) group of membrane transport proteins include over 400 members organized into 66 families. Most members of the SLC group are located in the cell membrane. The SLC gene nomenclature system was originally proposed by the HUGO Gene Nomenclature Committee (HGNC) and is the basis for the official HGNC names of the genes that encode these transporters. A more general transmembrane transporter classification can be found in TCDB database.

Sodium-dependent glucose cotransporters are a family of glucose transporter found in the intestinal mucosa (enterocytes) of the small intestine (SGLT1) and the proximal tubule of the nephron. They contribute to renal glucose reabsorption. In the kidneys, 100% of the filtered glucose in the glomerulus has to be reabsorbed along the nephron. If the plasma glucose concentration is too high (hyperglycemia), glucose passes into the urine (glucosuria) because SGLT are saturated with the filtered glucose.

The sodium/phosphate cotransporter is a member of the phosphate:Na+ symporter (PNaS) family within the TOG Superfamily of transport proteins as specified in the Transporter Classification Database (TCDB).

<span class="mw-page-title-main">Sodium/glucose cotransporter 1</span>

Sodium/glucose cotransporter 1 (SGLT1) also known as solute carrier family 5 member 1 is a protein in humans that is encoded by the SLC5A1 gene which encodes the production of the SGLT1 protein to line the absorptive cells in the small intestine and the epithelial cells of the kidney tubules of the nephron for the purpose of glucose uptake into cells. Through the use of the sodium glucose cotransporter 1 protein, cells are able to obtain glucose which is further utilized to make and store energy for the cell.

<span class="mw-page-title-main">Sodium/glucose cotransporter 2</span> Protein-coding gene in the species Homo sapiens

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 gene.

<span class="mw-page-title-main">Electrogenic sodium bicarbonate cotransporter 1</span> Protein-coding gene in the species Homo sapiens

Electrogenic sodium bicarbonate cotransporter 1, sodium bicarbonate cotransporter is a membrane transport protein that in humans is encoded by the SLC4A4 gene.

<span class="mw-page-title-main">SLC22A4</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22, member 4, also known as SLC22A4, is a human gene; the encoded protein is known as the ergothioneine transporter.

<span class="mw-page-title-main">SLC22A2</span> Protein-coding gene

Solute carrier family 22 member 2 is a protein that in humans is encoded by the SLC22A2 gene.

<span class="mw-page-title-main">SLC22A1</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 22 member 1 is a protein that in humans is encoded by the gene SLC22A1.

<span class="mw-page-title-main">Sodium-dependent phosphate transport protein 2B</span> Protein-coding gene in the species Homo sapiens

Sodium-dependent phosphate transport protein 2B (NaPi2b) is a protein that in humans is encoded by the SLC34A2 gene.

<span class="mw-page-title-main">SLC13A3</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 13 member 3 also called sodium-dependent dicarboxylate transporter (NaDC3) is a protein that in humans is encoded by the SLC13A3 gene.

<span class="mw-page-title-main">SLC13A2</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 13 member 2 is a protein that is encoded in humans by the SLC13A2 gene.

<span class="mw-page-title-main">Sodium/bile acid cotransporter 7</span> Protein-coding gene in the species Homo sapiens

Sodium/bile acid cotransporter 7 is a protein which in humans is encoded by the SLC10A7 gene.

<span class="mw-page-title-main">SLC6A18</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 6, member 18 also known as SLC6A18 is a protein which in humans is encoded by the SLC6A18 gene.

<span class="mw-page-title-main">Sodium-solute symporter</span> Group of transport proteins

Members of the Solute:Sodium Symporter (SSS) Family (TC# 2.A.21) catalyze solute:Na+ symport. The SSS family is within the APC Superfamily. The solutes transported may be sugars, amino acids, organo cations such as choline, nucleosides, inositols, vitamins, urea or anions, depending on the system. Members of the SSS family have been identified in bacteria, archaea and eukaryotes. Almost all functionally well-characterized members normally catalyze solute uptake via Na+ symport.

This family of proteins are found both in prokaryotes and eukaryotes. In mammals, they are transmembrane proteins with functions in the liver and in the intestine. They are members of the solute carrier family of cotransporter genes which include SLC10A1 and SLC10A2.

<span class="mw-page-title-main">SLC13A5</span> Protein-coding gene in humans

Solute carrier family 13 (sodium-dependent citrate transporter), member 5 also known as the Na+/citrate cotransporter or mIndy is a protein that in humans is encoded by the SLC13A5 gene. It is the mammalian homolog of the fly Indy gene.

Gliflozins are a class of drugs in the treatment of type 2 diabetes (T2D). They act by inhibiting sodium/glucose cotransporter 2 (SGLT-2), and are therefore also called SGLT-2 inhibitors. The efficacy of the drug is dependent on renal excretion and prevents glucose from going into blood circulation by promoting glucosuria. The mechanism of action is insulin independent.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000100191 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Entrez Gene: solute carrier family 5 (low affinity glucose cotransporter)".
  4. Veyhl M, Wagner K, Volk C, Gorboulev V, Baumgarten K, Weber WM, Schaper M, Bertram B, Wiessler M, Koepsell H (March 1998). "Transport of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard (D-19575) into tumor cells is mediated by the Na+-D-glucose cotransporter SAAT1". Proceedings of the National Academy of Sciences of the United States of America. 95 (6): 2914–9. Bibcode:1998PNAS...95.2914V. doi: 10.1073/pnas.95.6.2914 . PMC   19669 . PMID   9501190.
  5. Jung H (October 2002). "The sodium/substrate symporter family: structural and functional features". FEBS Letters. 529 (1): 73–7. doi: 10.1016/S0014-5793(02)03184-8 . PMID   12354616.

Further reading