Monocarboxylate transporter 1

Last updated
SLC16A1
Identifiers
Aliases SLC16A1 , HHF7, MCT, MCT1, MCT1D, solute carrier family 16 member 1
External IDs OMIM: 600682; MGI: 106013; HomoloGene: 20662; GeneCards: SLC16A1; OMA:SLC16A1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001166496
NM_003051

NM_009196

RefSeq (protein)

NP_001159968
NP_003042

NP_033222

Location (UCSC) Chr 1: 112.91 – 112.96 Mb Chr 3: 104.55 – 104.57 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Monocarboxylate transporter 1 is a ubiquitous protein that in humans is encoded by the SLC16A1 gene (also known as MCT1). [5] [6] [7] It is a proton coupled monocarboxylate transporter.

Contents

Biochemistry

Detailed kinetic analysis of monocarboxylate transport in erythrocytes revealed that MCT1 operates through an ordered mechanism. MCT1 has a substrate binding site open to the extracellular matrix which binds a proton first followed by the lactate anion. The protein then undergoes a conformational change to a new 'closed conformation that exposes both the proton and lactate to the opposite surface of the membrane where they are released, lactate first and then the proton. For net transport of lactic acid, the rate-limiting step is the return of MCT1 without bound substrate to the open conformation. For this reason, exchange of one monocarboxylate inside the cell with another outside is considerably faster than net transport of a monocarboxylate across the membrane.[ citation needed ]

MCT1 can be upregulated by PPAR-α, Nrf2, and AMPK. [8]

Animal studies

Overexpression of MCT1 has been shown to increase the efficacy of an anti-cancer drug currently undergoing clinical trials called 3-bromopyruvate in breast cancer cells. [9]

Clinical significance

Most cases of alveolar soft part sarcoma show PAS(+), diastase-resistant (PAS-D (+)) intracytoplasmic crystals which contain CD147 and monocarboxylate transporter 1 (MCT1). [10] Overexpression of MCT1 in pancreatic beta cells leads to hyperinsulinism during exercise. [11]

Hyperinsulinemic hypoglycemia, familial, 7 (HHF7) is an autosomal dominant disease on the SLC16A1/MCT gene on chromosome 1p13.2. It causes hyperinsulinemic hypoglycemia, where hyperinsulinism is exercise-induced. [12]

Monocarboxylate transporter 1 deficiency (MCTD1) is an autosomal dominant and recessive disease on the SLC16A1/MCT1 gene on chromosome 1p13.2. It causes poor feeding and vomiting, intellectual disability, ketotic hypoglycemia, ketoacidosis, ketonuria, with episodes brought on by fasting or infection. [13]

Erythrocyte lactate transporter defect (formerly, myopathy due to lactate transport defect) is an autosomal dominant disease on the SLC16A1/MCT gene on chromosome 1p.13.2. It causes exercise-induced muscle cramping, stiffness, and fatigue (exercise intolerance); symptoms may also be induced by heat. Although symptoms present in the muscles, muscle biopsy and EMG are normal. Decreased erythrocyte (red blood cell) lactate clearance, decreased lactate clearance from muscle after exercise, and elevated serum creatine kinase. [14]

Related Research Articles

<span class="mw-page-title-main">Ketogenesis</span> Chemical synthesis of ketone bodies

Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, or others.

Nesidioblastosis is a controversial medical term for hyperinsulinemic hypoglycemia attributed to excessive insulin production by pancreatic beta cells that have an abnormal microscopic appearance. The term was coined in the first half of the 20th century. The abnormal microscopic features of the tissue included the presence of islet cell enlargement, pancreatic islet cell dysplasia, beta cells budding from ductal epithelium, and islets in close proximity to ducts.

<span class="mw-page-title-main">Basigin</span> Mammalian protein found in Homo sapiens

Basigin (BSG) also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147) is a protein that in humans is encoded by the BSG gene. This protein is a determinant for the Ok blood group system. There are three known antigens in the Ok system; the most common being Oka, OK2 and OK3. Basigin has been shown to be an essential receptor on red blood cells for the human malaria parasite, Plasmodium falciparum. The common isoform of basigin (basigin-2) has two immunoglobulin domains, and the extended form basigin-1 has three.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">ABCC8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette transporter sub-family C member 8 is a protein that in humans is encoded by the ABCC8 gene. ABCC8 orthologs have been identified in all mammals for which complete genome data are available.

<span class="mw-page-title-main">Lactate dehydrogenase</span> Class of enzymes

Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of pyruvate to lactate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that transfers a hydride from one molecule to another.

<span class="mw-page-title-main">Monocarboxylate transporter 5</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 5 is a protein that in humans is encoded by the SLC16A4 gene.

<span class="mw-page-title-main">Monocarboxylate transporter 8</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 8 (MCT8) is an active transporter protein that in humans is encoded by the SLC16A2 gene.

<span class="mw-page-title-main">Monocarboxylate transporter 4</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 4 (MCT4) also known as solute carrier family 16 member 3 is a protein that in humans is encoded by the SLC16A3 gene.

<span class="mw-page-title-main">Sodium-coupled monocarboxylate transporter 1</span> Protein-coding gene in the species Homo sapiens

Sodium-coupled monocarboxylate transporter 1 (i.e., SMCT1) and sodium-coupled monocarboxylate transporter 2 (i.e., SMCT2) are plasma membrane transport proteins in the solute carrier family. They transport sodium cations in association with the anionic forms (see conjugated base) of certain short-chain fatty acids (i.e., SC-FAs) through the plasma membrane from the outside to the inside of cells. For example, propionic acid (i.e., CH
3
CH
2
CO
2
H
) in its anionic "propionate" form (i.e., CH
3
CH
2
CO
2
) along with sodium cations (i.e., Na+) are co-transported from the extracellular fluid into a SMCT1-epxressing cell's cytoplasm. Monocarboxylate transporters (MCTs) are also transport proteins in the solute carrier family. They co-transport the anionic forms of various compounds into cells in association with proton cations (i.e. H+). Four of the 14 MCTs, i.e. SLC16A1 (i.e., MCT1), SLC16A7 (i.e., MCT22), SLC16A8 (i.e., MCT3), and SLC16A3 (i.e., MCT4), transport some of the same SC-FAs anions that the SMCTs transport into cells. SC-FAs do diffuse into cells independently of transport proteins but at the levels normally occurring in tissues far greater amounts of the SC-FAs are brought into cells that express a SC-FA transporter.

<span class="mw-page-title-main">Inborn errors of carbohydrate metabolism</span> Medical condition

Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.

<span class="mw-page-title-main">Hydroxyacyl-Coenzyme A dehydrogenase</span> Protein-coding gene in the species Homo sapiens

Hydroxyacyl-Coenzyme A dehydrogenase (HADH) is an enzyme which in humans is encoded by the HADH gene.

The monocarboxylate transporters, or MCTs, are a family of proton-linked plasma membrane transporters that carry molecules having one carboxylate group (monocarboxylates), such as lactate, pyruvate, and ketones across biological membranes. Acetate is actively transported to intestinal enteroendocrine cells via MCT, termed Targ. MCTs are expressed in nearly every kind of cell.

<span class="mw-page-title-main">Monocarboxylate transporter 9</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 9 is a protein that in humans is encoded by the SLC16A9 gene.

The lactate shuttle hypothesis describes the movement of lactate intracellularly and intercellularly. The hypothesis is based on the observation that lactate is formed and utilized continuously in diverse cells under both anaerobic and aerobic conditions. Further, lactate produced at sites with high rates of glycolysis and glycogenolysis can be shuttled to adjacent or remote sites including heart or skeletal muscles where the lactate can be used as a gluconeogenic precursor or substrate for oxidation. The hypothesis was proposed in 1985 by George Brooks of the University of California at Berkeley.

<span class="mw-page-title-main">Monocarboxylate transporter 2</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 2 (MCT2) also known as solute carrier family 16 member 7 (SLC16A7) is a protein that in humans is encoded by the SLC16A7 gene. MCT2 is a proton-coupled monocarboxylate transporter. It catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactic acid, branched-chain oxo acids derived from [[leucine, valine, and isoleucine, and the ketone bodies acetoacetate and beta-hydroxybutyrate. It also functions as high-affinity pyruvate transporter.

<span class="mw-page-title-main">Monocarboxylate transporter 3</span> Protein-coding gene in the species Homo sapiens

Monocarboxylate transporter 3 (MCT3) also known as solute carrier family 16 member 8 is a protein that in humans is encoded by the SLC16A8 gene. MCT is a proton-coupled monocarboxylate transporter. It catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, branched-chain oxo acids derived from leucine, valine and isoleucine, and the ketone bodies acetoacetate, beta-hydroxybutyrate and acetate. It also functions as high-affinity pyruvate transporter.

<span class="mw-page-title-main">Proton-coupled folate transporter</span> Mammalian protein found in Homo sapiens

The proton-coupled folate transporter is a protein that in humans is encoded by the SLC46A1 gene. The major physiological roles of PCFTs are in mediating the intestinal absorption of folate, and its delivery to the central nervous system.

Sodium-coupled monocarboxylate transporter 2 (i.e., SMCT2, also termed SLC5A12) is a plasma membrane transport protein in the solute carrier family. It transports sodium cations (i.e., Na+) in association with the anionic forms (see conjugated base) of certain short-chain fatty acids (i.e., SC-FAs) and other agents through the plasma membrane from the outside to the inside of cells. The only other member of the sodium-coupled monocarboxylate transporter group (sometimes referred to as the SLC5A family), SMCT1, similarly co-transports SC-FAs and other agents into cells. Monocarboxylate transporters (MCTs) are also transport proteins in the solute carrier family. They co-transport the anionic forms of various compounds into cells in association with hydrogen cations (i.e. H+). Four of the 14 MCTs, i.e. SLC16A1 (i.e., MCT1), SLC16A7 (i.e., MCT22), SLC16A8 (i.e., MCT3), and SLC16A3 (i.e., MCT4), transport some of the same SC-FAs anions that the two SMCTs transport into cells. SC-FAs do diffuse into cells independently of transport proteins but at the levels normally occurring in tissues greater amounts of the SC-FAs are brought into cells that express a SC-FA transporter.

References

  1. 1 2 3 ENSG00000281917 GRCh38: Ensembl release 89: ENSG00000155380, ENSG00000281917 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032902 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS (Mar 1994). "Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle". Cell. 76 (5): 865–73. doi:10.1016/0092-8674(94)90361-1. PMID   8124722. S2CID   22137883.
  6. Garcia CK, Li X, Luna J, Francke U (Sep 1994). "cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12". Genomics. 23 (2): 500–3. doi: 10.1006/geno.1994.1532 . PMID   7835905.
  7. "Entrez Gene: SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 1)".
  8. Felmlee MA, Jones RS, Morris ME (2020). "Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease". Pharmacological Reviews . 72 (2): 466–485. doi:10.1124/pr.119.018762. PMC   7062045 . PMID   32144120.
  9. Liu Z, Sun Y, Hong H, Zhao S, Zou X, Ma R, Jiang C, Wang Z, Li H, Liu H (2015-08-15). "3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells". American Journal of Cancer Research. 5 (9): 2673–85. doi:10.1158/1538-7445.AM2015-2673. PMC   4633897 . PMID   26609475.
  10. Ladanyi M, Antonescu CR, Drobnjak M, Baren A, Lui MY, Golde DW, Cordon-Cardo C (Apr 2002). "The precrystalline cytoplasmic granules of alveolar soft part sarcoma contain monocarboxylate transporter 1 and CD147". The American Journal of Pathology. 160 (4): 1215–21. doi:10.1016/S0002-9440(10)62548-5. PMC   1867200 . PMID   11943706.
  11. Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA (Jul 2012). "Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise". Diabetes. 61 (7): 1719–25. doi:10.2337/db11-1531. PMC   3379650 . PMID   22522610.
  12. "HYPERINSULINEMIC HYPOGLYCEMIA, FAMILIAL, 7; HHF7". omim.org. Retrieved 2023-08-21.
  13. "MONOCARBOXYLATE TRANSPORTER 1 DEFICIENCY; MCT1D". omim.org. Retrieved 2023-08-21.
  14. "ERYTHROCYTE LACTATE TRANSPORTER DEFECT". omim.org. Retrieved 2023-08-21.

Further reading