Transaldolase deficiency

Last updated
Transaldolase deficiency
Transaldolaseribbon.jpg
The structure of the Tranaldolase enzyme. [1] [2]

Transaldolase deficiency is a disease characterised by abnormally low levels of the transaldolase enzyme. It is a metabolic enzyme involved in the pentose phosphate pathway. It is caused by mutation in the transaldolase gene (TALDO1). It was first described by Verhoeven et al. in 2001. [3]

Contents

Signs and Symptoms

The leading symptoms of Transaldolase Deficiency are coagulopathy, thrombocytopenia, hepatosplenomegaly, hepatic fibrosis and dysmorphic features. [4] The dysmorphic features can include antimongoloid slant, low-set ears, and cutis laxa. [5] Those affected by this disease have abnormal polyol concentrations in urine and other bodily fluids, this can determined by an abnormal liver function tests. [4] [5]

With transaldolase deficiency there is a buildup of sedoheptulose 7-phosphate (it is increased six to sevenfold in the blood compared to normal), which decreases the change of ribose 5-phosphate into glucose 6-phosphate. [6] [7] This reaction is important in releasing NADPH. Reduced glutathione is essential for regulation of Mitochondrial membrane permeability and depends on the NADPH generated from the pentose phosphate pathway to be regenerated from oxidized glutathione. [8] Transaldolase plays an important role in male fertility; this is because it maintains the mitochondrial transmembrane potential and its role in the release NADPH. Therefore, transaldolase deficiency decreases the mobility of spermatozoa and lowers male fertility. [7]

Liver cirrhosis is associated with increased apoptosis of hepatocytes and transaldolase is a regulator in apoptosis signaling processing – therefore transaldolase deficiency can result in liver cirrhosis. [8]

Causes

This pentose phosphate pathway in humans with the reaction catalysed by transaldolase underlined. Transaldolase annotated PENTOSE PHOSPHATE Pathway.gif
This pentose phosphate pathway in humans with the reaction catalysed by transaldolase underlined.

TALDO1 is either mutated by the deletion of residue Ser171 or a replacement of Arg192 by His or Cys, changing the formation of the protein. [10] The deletion of Ser171 leads to inactivation and proteasome-mediated degradation of TALDO1. [11]

This shows the pentose phosphate pathway in humans with transaldolase catalysing the following reaction: [9]

D-glyceraldehyde 3-phosphate + D-sedoheptulose 7-phosphate <=> D-fructose 6-phosphate + D-erythrose 4-phosphate

Diagnosis

There are two different techniques for the diagnosis of Transaldolase deficiency.

Metabolite Analyses

Autozygome analysis and biochemical evaluations of urinary sugars and polyols can be used to diagnose Transaldolase Deficiency. [12] Two specific methods for measuring the urinary sugars and polyols are liquid chromatographytandem mass spectrometry and gas chromatography with flame ionization detection. [5]

Mutation Analysis

Direct sequence analysis of genomic DNA from blood can be used to perform a mutation analysis for the TALDO1 gene responsible for the Transaldolase enzyme. [5]

Treatment

At this time there is no treatment for transaldolase deficiency. [13]

There is currently research being done to find treatments for transaldolase deficiency. A study done in 2009 used orally administered N-acetylcysteine on transaldolase deficient mice and it prevented the symptoms associated with the disease. [14] N-acetylcysteine is a precursor for reduced glutathione, which is decreased in transaldolase deficient patients. [8] [14]

Epidemiology

Transaldolase deficiency is recognized as a rare inherited pleiotropic metabolic disorder first recognized and described in 2001 that is autosomal recessive. [15] [4] [12] There have been only a few cases that have been noted, as of 2012 there have been 9 patients recognized with this disease and one fetus. [4]

See also

Transaldolase

Inborn error of metabolism

Pentose phosphate pathway

Glucose-6-phosphate dehydrogenase deficiency

Related Research Articles

<span class="mw-page-title-main">Galactosemia</span> Medical condition

Galactosemia is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.

<span class="mw-page-title-main">Transferase</span> Class of enzymes which transfer functional groups between molecules

In biochemistry, a transferase is any one of a class of enzymes that catalyse the transfer of specific functional groups from one molecule to another. They are involved in hundreds of different biochemical pathways throughout biology, and are integral to some of life's most important processes.

In organic chemistry, a tetrose is a monosaccharide with 4 carbon atoms. They have either an aldehyde functional group in position 1 (aldotetroses) or a ketone group in position 2 (ketotetroses).

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide phosphate</span> Chemical compound

Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form, whereas NADP+ is the oxidized form. NADP+ is used by all forms of cellular life. NADP+ is essential for life because it is needed for cellular respiration.

A heptose is a monosaccharide with seven carbon atoms.

<span class="mw-page-title-main">Sedoheptulose</span> Chemical compound

Sedoheptulose or pseudoheptulose or D-altro-heptulose is a ketoheptose—a monosaccharide with seven carbon atoms and a ketone functional group. It is one of the few heptoses found in nature, and is found in various fruits and vegetables ranging from carrots and leeks to figs, mangos and avocados.

<span class="mw-page-title-main">Pentose phosphate pathway</span> Series of interconnected biochemical reactions

The pentose phosphate pathway is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers.

<span class="mw-page-title-main">Transketolase</span> Enzyme involved in metabolic pathways

Transketolase is an enzyme that, in humans, is encoded by the TKT gene. It participates in both the pentose phosphate pathway in all organisms and the Calvin cycle of photosynthesis. Transketolase catalyzes two important reactions, which operate in opposite directions in these two pathways. In the first reaction of the non-oxidative pentose phosphate pathway, the cofactor thiamine diphosphate accepts a 2-carbon fragment from a 5-carbon ketose (D-xylulose-5-P), then transfers this fragment to a 5-carbon aldose (D-ribose-5-P) to form a 7-carbon ketose (sedoheptulose-7-P). The abstraction of two carbons from D-xylulose-5-P yields the 3-carbon aldose glyceraldehyde-3-P. In the Calvin cycle, transketolase catalyzes the reverse reaction, the conversion of sedoheptulose-7-P and glyceraldehyde-3-P to pentoses, the aldose D-ribose-5-P and the ketose D-xylulose-5-P.

<span class="mw-page-title-main">Glucose-6-phosphate dehydrogenase</span> Enzyme involved in the production of energy by cells

Glucose-6-phosphate dehydrogenase (G6PD or G6PDH) (EC 1.1.1.49) is a cytosolic enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glutathione reductase</span> Enzyme

Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene. Glutathione reductase catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), which is a critical molecule in resisting oxidative stress and maintaining the reducing environment of the cell. Glutathione reductase functions as dimeric disulfide oxidoreductase and utilizes an FAD prosthetic group and NADPH to reduce one molar equivalent of GSSG to two molar equivalents of GSH:

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is an enzyme in humans encoded by the gene AKR1B1. It is an cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides, and primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">Transaldolase</span> Enzyme family

Transaldolase is an enzyme of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the TALDO1 gene.

<span class="mw-page-title-main">Ribose 5-phosphate</span> Chemical compound

Ribose 5-phosphate (R5P) is both a product and an intermediate of the pentose phosphate pathway. The last step of the oxidative reactions in the pentose phosphate pathway is the production of ribulose 5-phosphate. Depending on the body's state, ribulose 5-phosphate can reversibly isomerize to ribose 5-phosphate. Ribulose 5-phosphate can alternatively undergo a series of isomerizations as well as transaldolations and transketolations that result in the production of other pentose phosphates as well as fructose 6-phosphate and glyceraldehyde 3-phosphate.

<span class="mw-page-title-main">Erythrose 4-phosphate</span> Chemical compound

Erythrose 4-phosphate is a phosphate of the simple sugar erythrose. It is an intermediate in the pentose phosphate pathway and the Calvin cycle.

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribose-5-phosphate isomerase</span>

Ribose-5-phosphate isomerase (Rpi) encoded by the RPIA gene is an enzyme that catalyzes the conversion between ribose-5-phosphate (R5P) and ribulose-5-phosphate (Ru5P). It is a member of a larger class of isomerases which catalyze the interconversion of chemical isomers. It plays a vital role in biochemical metabolism in both the pentose phosphate pathway and the Calvin cycle. The systematic name of this enzyme class is D-ribose-5-phosphate aldose-ketose-isomerase.

<span class="mw-page-title-main">6-phosphogluconate dehydrogenase deficiency</span> Medical condition

6-Phosphogluconate dehydrogenase deficiency, or partial deficiency, is an autosomal hereditary disease characterized by abnormally low levels of 6-phosphogluconate dehydrogenase (6PGD), a metabolic enzyme involved in the Pentose phosphate pathway. It is very important in the metabolism of red blood cells (erythrocytes). 6PDG deficiency affects less than 1% of the population, and studies suggest that there may be race variant involved in many of the reported cases. Although it is similar, 6PDG deficiency is not linked to glucose-6-phosphate dehydrogenase (G6PD) deficiency, as they are located on different chromosomes. However, a few people have had both of these metabolic diseases.

Ribose-5-phosphate isomerase deficiency (RPID) is a rare human disorder caused by mutations in ribose-5-phosphate isomerase, an enzyme of the pentose phosphate pathway. With only four known cases – all diagnosed between 1984 and 2019 – RPI deficiency is the second rarest disease, with Fields condition being the rarest, affecting two known individuals, Catherine and Kirstie Fields.

<span class="mw-page-title-main">Transaldolase 1</span> Protein-coding gene in the species Homo sapiens

Transaldolase 1 is a protein that in humans is encoded by the TALDO1 gene.

References

  1. Thorell S, Gergely P, Banki K, Perl A, Schneider G (Jun 2000). "The three-dimensional structure of human transaldolase". FEBS Lett. 475 (3): 205–8. doi:10.1016/s0014-5793(00)01658-6. PMID   10869557. S2CID   33590067.
  2. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (October 2004). "UCSF Chimera–a visualization system for exploratory research and analysis". J Comput Chem. 25 (13): 1605–12. doi:10.1002/jcc.20084. PMID   15264254. S2CID   8747218.
  3. Verhoeven NM, Huck JH, Roos B, et al. (May 2001). "Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway". Am. J. Hum. Genet. 68 (5): 1086–92. doi:10.1086/320108. PMC   1226089 . PMID   11283793.
  4. 1 2 3 4 Loeffen YG, Biebuyck N, Wamelink MM, Jakobs C, Mulder MF, Tylki-Szymańska A, Fung CW, Valayannopoulos V, Bökenkamp A (Aug 2012). "Nephrological abnormalities in patients with transaldolase deficiency". Nephrol Dial Transplant. 27 (8): 3224–7. doi: 10.1093/ndt/gfs061 . PMID   22510381.
  5. 1 2 3 4 Balasubramaniam S, Wamelink MM, Ngu LH, Talib A, Salomons GS, Jakobs C, Keng WT (Jan 2011). "Novel heterozygous mutations in TALDO1 gene causing transaldolase deficiency and early infantile liver failure". J Pediatr Gastroenterol Nutr. 52 (1): 113–6. doi: 10.1097/MPG.0b013e3181f50388 . PMID   21119539. S2CID   7342726.
  6. Vas G, Conkrite K, Amidon W, Qian Y, Bánki K, Perl A (Apr 2006). "Study of transaldolase deficiency in urine samples by capillary LC-MS/MS". J Mass Spectrom. 41 (4): 463–9. Bibcode:2006JMSp...41..463V. doi:10.1002/jms.1004. PMC   3127395 . PMID   16470722.
  7. 1 2 Perl A, Qian Y, Chohan KR, Shirley CR, Amidon W, Banerjee S, Middleton FA, Conkrite KL, Barcza M, Gonchoroff N, Suarez SS, Banki K (Oct 2006). "Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa". Proc Natl Acad Sci U S A. 103 (40): 14813–8. Bibcode:2006PNAS..10314813P. doi: 10.1073/pnas.0602678103 . PMC   1595434 . PMID   17003133.
  8. 1 2 3 Perl A (Jun 2007). "The pathogenesis of transaldolase deficiency". IUBMB Life. 59 (6): 365–73. doi: 10.1080/15216540701387188 . PMID   17613166.
  9. 1 2 Romero P.; Wagg J.; Green M.L.; Kaiser D.; Krummenacker M.; Karp P.D. (2004). "Computational prediction of human metabolic pathways from the complete human genome". Genome Biology. 6 (1): 1–17. doi: 10.1186/gb-2004-6-1-r2 . PMC   549063 . PMID   15642094.
  10. Samland AK, Sprenger GA (Jul 2009). "Transaldolase: from biochemistry to human disease". Int J Biochem Cell Biol. 41 (7): 1482–94. doi:10.1016/j.biocel.2009.02.001. PMID   19401148.
  11. Wamelink MM, Struys EA, Jakobs C (Dec 2008). "The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review". J Inherit Metab Dis. 31 (6): 703–17. doi: 10.1007/s10545-008-1015-6 . PMID   18987987. S2CID   30263176.
  12. 1 2 Jassim N, Alghaihab M, Al Saleh S, Alfadhel M, Wamelink MM, Eyaid W (2013). "Pulmonary Manifestations in a Patient with Transaldolase Deficiency". JIMD Reports - Volume 12. Vol. 12. pp. 47–50. doi:10.1007/8904_2013_243. ISBN   978-3-319-03460-7. PMC   3897798 . PMID   23846909.{{cite book}}: |journal= ignored (help)
  13. Wamelink MM, Struys EA, Salomons GS, Fowler D, Jakobs C, Clayton PT (Jun 2008). "Transaldolase deficiency in a two-year-old boy with cirrhosis". Mol Genet Metab. 94 (2): 255–8. doi:10.1016/j.ymgme.2008.01.011. PMID   18331807.
  14. 1 2 Hatting M.; Trautwein C.; Cubero F. J. (2009). "TAL deficiency, all roads lead to oxidative stress?". Hepatology. 50 (3): 979–981. doi: 10.1002/hep.23227 . PMID   19714731.
  15. Eyaid W, Al Harbi T, Anazi S, Wamelink MM, Jakobs C, Al Salammah M, Al Balwi M, Alfadhel M, Alkuraya FS (Nov 2013). "Transaldolase deficiency: report of 12 new cases and further delineation of the phenotype". J Inherit Metab Dis. 36 (6): 997–1004. doi:10.1007/s10545-012-9577-8. PMID   23315216. S2CID   25110878.