Polyol

Last updated

In organic chemistry, a polyol is an organic compound containing multiple hydroxyl groups (−OH). The term "polyol" can have slightly different meanings depending on whether it is used in food science or polymer chemistry. Polyols containing two, three and four hydroxyl groups are diols, [1] triols, [2] and tetrols, [3] [4] respectively.

Contents

Classification

Polyols may be classified according to their chemistry. [5] Some of these chemistries are polyether, polyester, [6] polycarbonate [7] [8] and also acrylic polyols. [9] [10] Polyether polyols may be further subdivided and classified as polyethylene oxide or polyethylene glycol (PEG), polypropylene glycol (PPG) and Polytetrahydrofuran or PTMEG. These have 2, 3 and 4 carbons respectively per oxygen atom in the repeat unit. Polycaprolactone polyols are also commercially available. [11] There is also an increasing trend to use biobased (and hence renewable) polyols. [12] [13] [14] [15]

Uses

Polyether polyols have numerous uses. [16] [17] As an example, polyurethane foam is a big user of polyether polyols. [18]

Polyester polyols can be used to produce rigid foam. [19] [20] They are available in both aromatic and aliphatic versions. [21] [22] They are also available in mixed aliphatic-aromatic versions often made from recycled raw materials, typically polyethylene terephthalate (PET). [23]

Acrylic polyols are generally used in higher performance applications where stability to ultraviolet light is required [24] and also lower VOC coatings. [25] [26] Other uses include direct to metal coatings. [27] As they are used where good UV resistance is required, such as automotive coatings, the isocyanate component also tends to be UV resistant and hence isocyanate oligomers or prepolymers based on Isophorone diisocyanate are generally used. [28]

Caprolactone-based polyols produce polyurethanes with enhanced hydrolysis resistance. [29] [30]

Polycarbonate polyols are more expensive than other polyols and are thus used in more demanding applications. [31] [32] They have been used to make an isophorone diisocyanate based prepolymer which is then used in glass coatings. [33] They may be used in reactive hotmelt adhesives. [34]

All polyols may be used to produce polyurethane prepolymers. [35] [36] [37] These then find use in coatings, [38] adhesives, sealants and elastomers. [39]

Low molecular weight polyols

Structure of an idealized alkyd resin derived from the polyol glycerol (red, a low molecular weight polyol) and phthalic anhydride. Glyptal.svg
Structure of an idealized alkyd resin derived from the polyol glycerol (red, a low molecular weight polyol) and phthalic anhydride.

Low molecular weight polyols are widely used in polymer chemistry where they function as crosslinking agents and chain extenders. Alkyd resins for example, use polyols in their synthesis and are used in paints and in molds for casting. They are the dominant resin or "binder" in most commercial "oil-based" coatings. Approximately 200,000 tons of alkyd resins are produced each year. They are based on linking reactive monomers through ester formation. Polyols used in the production of commercial alkyd resins are glycerol, trimethylolpropane, and pentaerythritol. [40] In polyurethane prepolymer production, a low molecular weight polyol-diol such as 1,4-butanediol may be used as a chain extender to further increase molecular weight though it does increase viscosity because more hydrogen bonding is introduced. [38]

Low molecular weight polyols
Pentaerythritol.svg
Pentaerythritol
Xylitol Structural Formula V.1.svg

Xylitol

Sugar alcohols

Sugar alcohols, a class of low molecular weight polyols, are commonly obtained by hydrogenation of sugars. [41] :363 They have the formula (CHOH)nH2, where n = 4–6. [42]

Sugar alcohols are added to foods because of their lower caloric content than sugars; however, they are also, in general, less sweet, and are often combined with high-intensity sweeteners. They are also added to chewing gum because they are not broken down by bacteria in the mouth or metabolized to acids, and thus do not contribute to tooth decay. Maltitol, sorbitol, xylitol, erythritol, and isomalt are common sugar alcohols.

Polymeric polyols

Polymeric polyols
Polyether Polyol Structural Formula V3.svg

Polyether polyol

(The oxygen atoms of the ether linkages

are shown in blue.)

Polyester Polyol Structural Formula V.3.svg
Polyester polyol

(The oxygen and carbon atoms

of the ester groups are shown in blue.)

The term polyol is used for various chemistries of the molecular backbone. Polyols may be reacted with diisocyanates or polyisocyanates to produce polyurethanes. MDI finds considerable use in PU foam production. [43] Polyurethanes are used to make flexible foam for mattresses and seating, rigid foam insulation for refrigerators and freezers, elastomeric shoe soles, fibers (e.g. Spandex), coatings, sealants and adhesives. [44]

The term polyol is also attributed to other molecules containing hydroxyl groups. For instance, polyvinyl alcohol is (CH2CHOH)n with n hydroxyl groups where n can be in the thousands. Cellulose is a polymer with many hydroxyl groups, but it is not referred to as a polyol.

Polyols from recycled or renewable sources

There are polyols based on renewable sources such as plant-based materials including castor oil and cottonseed oil. [45] [46] [47] Vegetable oils and biomass are also potential renewable polyol raw materials. [48] Seed oil can even be used to produce polyester polyols. [49]

Properties

Since the generic term polyol is only derived from chemical nomenclature and just indicates the presence of several hydroxyl groups, no common properties can be assigned to all polyols. However, polyols are usually viscous at room temperature due to hydrogen bonding.

See also

Related Research Articles

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Varnish</span> Transparent hard protective finish or film

Varnish is a clear transparent hard protective coating or film. It is not to be confused with wood stain. It usually has a yellowish shade due to the manufacturing process and materials used, but it may also be pigmented as desired. It is sold commercially in various shades.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Polyurea</span> Class of elastomers

Polyurea is a type of elastomer that is derived from the reaction product of an isocyanate component and an amine component. The isocyanate can be aromatic or aliphatic in nature. It can be monomer, polymer, or any variant reaction of isocyanates, quasi-prepolymer or a prepolymer. The prepolymer, or quasi-prepolymer, can be made of an amine-terminated polymer resin, or a hydroxyl-terminated polymer resin.

<span class="mw-page-title-main">Methylene diphenyl diisocyanate</span> Aromatic diisocyanate

Methylene diphenyl diisocyanate (MDI) is an aromatic diisocyanate. Three isomers are common, varying by the positions of the isocyanate groups around the rings: 2,2′-MDI, 2,4′-MDI, and 4,4′-MDI. The 4,4′ isomer is most widely used, and is also known as 4,4′-diphenylmethane diisocyanate. This isomer is also known as Pure MDI. MDI reacts with polyols in the manufacture of polyurethane. It is the most produced diisocyanate, accounting for 61.3% of the global market in the year 2000.

<span class="mw-page-title-main">Polypropylene glycol</span> Chemical compound

Polypropylene glycol or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG) H S Code 3907.2000. The term polypropylene glycol or PPG is reserved for polymer of low- to medium-range molar mass when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high-molar-mass polymer when end-groups no longer affect polymer properties. Between 60 and 70% of propylene oxide is converted to polyether polyols by the process called alkoxylation.

<span class="mw-page-title-main">Alkyd</span> Polyester resin modified by the addition of fatty acids and other components

An alkyd is a polyester resin modified by the addition of fatty acids and other components. Alkyds are derived from polyols and organic acids including dicarboxylic acids or carboxylic acid anhydride and triglyceride oils. The term alkyd is a modification of the original name "alcid", reflecting the fact that they are derived from alcohol and organic acids. The inclusion of a fatty acid confers a tendency to form flexible coatings. Alkyds are used in paints, varnishes and in moulds for casting. They are the dominant resin or binder in most commercial oil-based coatings. Approximately 200,000 tons of alkyd resins are produced each year. The original alkyds were compounds of glycerol and phthalic acid sold under the name Glyptal. These were sold as substitutes for the darker-colored copal resins, thus creating alkyd varnishes that were much paler in colour. From these, the alkyds that are known today were developed.

<span class="mw-page-title-main">Isophorone diisocyanate</span> Chemical compound

Isophorone diisocyanate (IPDI) is an organic compound in the class known as isocyanates. More specifically, it is an aliphatic diisocyanate. It is produced in relatively small quantities, accounting for only 3.4% of the global diisocyanate market in the year 2000. Aliphatic diisocyanates are used, not in the production of polyurethane foam, but in special applications, such as enamel coatings which are resistant to abrasion and degradation from ultraviolet light. These properties are particularly desirable in, for instance, the exterior paint applied to aircraft.

<span class="mw-page-title-main">Melamine resin</span> Hard, thermosetting plastic material often used in dinnerware

Melamine resin or melamine formaldehyde is a resin with melamine rings terminated with multiple hydroxyl groups derived from formaldehyde. This thermosetting plastic material is made from melamine and formaldehyde. In its butylated form, it is dissolved in n-butanol and xylene. It is then used to cross-link with alkyd, epoxy, acrylic, and polyester resins, used in surface coatings. There are many types, varying from very slow to very fast curing.

Thermoplastic polyurethane (TPU) is any of a class of polyurethane plastics with many properties, including elasticity, transparency, and resistance to oil, grease, and abrasion. Technically, they are thermoplastic elastomers consisting of linear segmented block copolymers composed of hard and soft segments.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

In polymer chemistry, the term prepolymer or pre-polymer, refers to a monomer or system of monomers that have been reacted to an intermediate-molecular mass state. This material is capable of further polymerization by reactive groups to a fully cured, high-molecular-mass state. As such, mixtures of reactive polymers with un-reacted monomers may also be referred to as pre-polymers. The term "pre-polymer" and "polymer precursor" may be interchanged.

Moisture-cure polyurethanes -- or polyurethane prepolymer -- are isocyanate-terminated prepolymers that are formulated to cure with ambient water. Cured PURs are segmented copolymer polyurethane-ureas exhibiting microphase-separated morphologies. One phase is derived from a typically flexible polyol that is generally referred to as the “soft phase”. Likewise the corresponding “hard phase” is born from the di- or polyisocyanates that through water reaction produce a highly crosslinked material with softening temperature well above room temperature.

Polyurethane dispersion, or PUD, is understood to be a polyurethane polymer resin dispersed in water, rather than a solvent, although some cosolvent may be used. Its manufacture involves the synthesis of polyurethanes having carboxylic acid functionality or nonionic hydrophiles like PEG incorporated into, or pendant from, the polymer backbone. Two component polyurethane dispersions are also available.

<span class="mw-page-title-main">Dimethylolpropionic acid</span> Organic compound with one carboxyl and two hydroxyl groups

Dimethylolpropionic acid (DMPA) is a chemical compound that has the full IUPAC name of 2,2-bis(hydroxymethyl)propionic acid and is an organic compound with one carboxyl and two hydroxy groups. It has the CAS Registry Number of 4767-03-7.

Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying medium as opposed to solvent or solvent-less. Resins are used in the production of coatings, adhesives, sealants, elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water as the main carrying solvent. The resin could be water-soluble, water reducible or water dispersed.

Hydrogenated MDI (H12MDI or 4,4′-diisocyanato dicyclohexylmethane) is an organic compound in the class known as isocyanates. More specifically, it is an aliphatic diisocyanate. It is a water white liquid at room temperature and is manufactured in relatively small quantities. It is also known as 4,4'-methylenedi(cyclohexyl isocyanate) or methylene bis(4-cyclohexylisocyanate) and has the formula CH2[(C6H10)NCO]2.

Blocked isocyanates are organic compounds that have their isocyanate functionality chemically blocked to control reactivity. They are the product of an isocyanate moiety and a suitable blocking agent. It may also be a polyurethane prepolymer that is NCO terminated but this functionality has also been chemically reacted with a blocking agent. They are usually used in polyurethane applications but not always. They are extensively used in industrial applications such as coatings, sealants and adhesives.

References

  1. "Basic IUPAC Organic Nomenclature - Diols (or polyols)". University of Calgary. 2022.
  2. "Definition of TRIOL". www.merriam-webster.com. Retrieved 2022-02-12.
  3. "Tetrol Meaning". www.yourdictionary.com. Retrieved 2022-02-12.
  4. PubChem. "Butane-1,2,3,4-tetrol". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-02-12.
  5. Howarth, GA (2003). "Polyurethanes, polyurethane dispersions and polyureas: Past, present and future". Surface Coatings International Part B: Coatings Transactions. 86 (2): 111–118. doi:10.1007/BF02699621. S2CID   93574741.
  6. "Polyester Polyols - an overview". www.sciencedirect.com. Retrieved 2022-02-12.
  7. Scharfenberg, Markus; Hofmann, Silja; Preis, Jasmin; Hilf, Jeannette; Frey, Holger (2017-08-22). "Rigid Hyperbranched Polycarbonate Polyols from CO2 and Cyclohexene-Based Epoxides". Macromolecules. 50 (16): 6088–6097. doi:10.1021/acs.macromol.7b01276. ISSN   0024-9297.
  8. WO2011129940A1,Montgomery, Steven; Brown, Shawn& Sonnenschein, Market al.,"Polycarbonate polyols and polyurethanes made therefrom",issued 2011-10-20
  9. Roesler, Richard (26 March 1986). "Acrylic polyols having low residual monomer content European Patent" (PDF). European Patent.
  10. "Polyacrylate Polyols". Ebrary. Retrieved 2022-02-13.
  11. "Polycaprolactone Polyols Market Report - Size and Share by 2026 | AMR". Allied Market Research. Retrieved 2022-02-12.
  12. Li, Yonghui; Sun, Xiuzhi Susan (2015-05-15). "Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives". RSC Advances. 5 (55): 44009–44017. doi:10.1039/C5RA04399A. ISSN   2046-2069.
  13. Patel JV, Desai SD, Sinha, VK (March 2004). "Bio-acrylic polyols for two pack polyurethane coating". Journal of Scientific and Industrial Research. 63 (3): 259–264. Retrieved 2022-02-13.
  14. Kasprzyk, Paulina; Sadowska, Ewelina; Datta, Janusz (2019-11-01). "Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers". Journal of Polymers and the Environment. 27 (11): 2588–2599. doi: 10.1007/s10924-019-01543-7 . ISSN   1572-8919. S2CID   201704473.
  15. Gurunathan, T.; Mohanty, Smita; Nayak, Sanjay K. (2015-03-01). "Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization". Progress in Organic Coatings. 80: 39–48. doi:10.1016/j.porgcoat.2014.11.017. ISSN   0300-9440.
  16. Datta, Janusz; Kosiorek, Paulina; Włoch, Marcin (2017-04-01). "Synthesis, structure and properties of poly(ether-urethane)s synthesized using a tri-functional oxypropylated glycerol as a polyol". Journal of Thermal Analysis and Calorimetry. 128 (1): 155–167. doi: 10.1007/s10973-016-5928-2 . ISSN   1588-2926. S2CID   100046328.
  17. Kantheti, Sasidhar; Sarath, P. S.; Narayan, Ramanuj; Raju, K. V. S. N. (2013-12-01). "Synthesis and characterization of triazole rich polyether polyols using click chemistry for highly branched polyurethanes". Reactive and Functional Polymers. 73 (12): 1597–1605. doi:10.1016/j.reactfunctpolym.2013.09.002. ISSN   1381-5148.
  18. Abraham, T.W.; Höfer, R. (2012). "10.03 - Lipid-Based Polymer Building Blocks and Polymers". In Matyjaszewski, K; Möller, M (eds.). Polymer Science: A Comprehensive Reference. Elsevier. pp. 15–58. doi:10.1016/B978-0-444-53349-4.00253-3. ISBN   9780080878621.
  19. McAdams, Carina; Farmer, Steven (September 2003). "Stabilization of Rigid Systems Containing Aromatic Polyester Polyol and Water". Journal of Cellular Plastics. 39 (September 2003): 369–386. doi:10.1177/0021955X03035067. S2CID   96795892.
  20. "Polyester polyols for rigid foam" (PDF). Stepan. February 2022.
  21. "Aromatic Polyester Polyols". purinova.com. Retrieved 2022-02-12.
  22. "Polyester Polyols" (PDF). Nord. May 2018.
  23. Makuska, Ricardas (2008). "Glycolysis of industrial poly(ethylene terephthalate) waste directed to bis(hydroxyethylene) terephthalate and aromatic polyester polyols" (PDF). Chemija. 19 (2): 29–34.
  24. US6762262B1,Wang, Wei&Harris, Stephen H.,"Preparation of acrylic polyols",issued 2004-07-13
  25. Ionescu, Mihail (2019). "10. Acrylic polyols". Aromatic Polyester Polyols: Chemistry and Technology. Vol. 1. De Gruyter. pp. 267–272. doi:10.1515/9783110644104-010. ISBN   978-3-11-064410-4. S2CID   241043906.
  26. "New Acrylic Polyols for Low-VOC Coatings". www.pcimag.com. 2002-05-31. Retrieved 2022-02-13.
  27. "Acrylic polyol with enhanced performance for 2K PUR direct-to-metal coatings". BASF. Retrieved 2022-02-13.
  28. Gite, V. V.; Mahulikar, P. P.; Hundiwale, D. G. (2010-08-01). "Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate". Progress in Organic Coatings. 68 (4): 307–312. doi:10.1016/j.porgcoat.2010.03.008. ISSN   0300-9440.
  29. Takaaki, Fujiwa (19 July 1990). "A polycaprolactone polyol and hydrolysis resistant polyurethane resins prepared therefrom patent 0 409 735 A1" (PDF). European Patent Office.
  30. Huang, Shan; Xiao, Juan; Zhu, Yan’an; Qu, Jinqing (2017-05-01). "Synthesis and properties of spray-applied high solid content two component polyurethane coatings based on polycaprolactone polyols". Progress in Organic Coatings. 106: 60–68. doi:10.1016/j.porgcoat.2017.02.011. ISSN   0300-9440.
  31. Pohl, M.; Danieli, E.; Leven, M.; et al. (2016-12-13). "Dynamics of Polyether Polyols and Polyether Carbonate Polyols". Macromolecules. 49 (23): 8995–9003. doi:10.1021/acs.macromol.6b01601. ISSN   0024-9297.
  32. "Polycarbonate Diols for Ultimate Performance Polyurethanes". www.gantrade.com. Retrieved 2022-02-14.
  33. Wilson, Michael G. (November 1991). "New coatings for glass". Journal of the Oil and Colour Chemists Association. 11: 412–415 via Springer.
  34. Cherian, Anna (2014-11-01). "Carbon Dioxide-Based Polycarbonate Polyols for Polyurethane Systems". www.adhesivesmag.com. Retrieved 2022-02-14.
  35. Harani, H.; Fellahi, S.; Bakar, M. (1998). "Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters". Journal of Applied Polymer Science. 70 (13): 2603–2618. doi: 10.1002/(SICI)1097-4628(19981226)70:13<2603::AID-APP6>3.0.CO;2-4 . ISSN   1097-4628.
  36. Shi, Minxian; Zheng, Juanli; Huang, Zhixiong; Qin, Yan (2011-03-01). "Synthesis of Polyurethane Prepolymers and Damping Property of Polyurethane/Epoxy Composites". Advanced Science Letters. 4 (3): 740–744. doi:10.1166/asl.2011.1597.
  37. Pokharel, Pashupati; Lee, Dai Soo (2014-10-01). "High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol". Chemical Engineering Journal. 253: 356–365. doi:10.1016/j.cej.2014.05.046. ISSN   1385-8947.
  38. 1 2 Howarth, G.A. (2000). "Legislation‐compliant polyurethane and epoxy coatings". Pigment & Resin Technology. 29 (6): 325–336. doi:10.1108/03699420010355120.
  39. Wang, Lei; Shen, Yiding; Lai, Xiaojuan; et al. (2011-05-01). "Synthesis and properties of crosslinked waterborne polyurethane". Journal of Polymer Research. 18 (3): 469–476. doi:10.1007/s10965-010-9438-9. ISSN   1572-8935. S2CID   56442579.
  40. Frank N. Jones. "Alkyd Resins". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_409. ISBN   978-3527306732.
  41. Malani, Ritesh S.; Malshe, Vinod C.; Thorat, Bhaskar Narayan (2022). "Polyols and polyurethanes from renewable sources: past, present, and future—part 2: plant-derived materials". Journal of Coatings Technology and Research. 19 (2): 361–375. doi:10.1007/s11998-021-00534-5. ISSN   1935-3804. S2CID   246083110.
  42. Schiweck H, Bär A, Vogel R, et al. (2012). "Sugar Alcohols". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a25_413.pub3. ISBN   978-3527306732.
  43. "4,4′-Methylene diphenyl isocyanate (MDI) and polymeric MDI″ (PMDI) [MAK Value Documentation, 1997]", The MAK-Collection for Occupational Health and Safety, John Wiley & Sons, Ltd, pp. 66–96, 2012, doi:10.1002/3527600418.mb10168stae0008, ISBN   978-3-527-60041-0 , retrieved 2022-02-12
  44. Boustead, I. (2005). "Polyurethane rigid foam" (PDF). Eco-Profiles of the European Plastics Industry. Brussels: PlasticsEurope. Archived from the original (PDF) on 2013-09-25.
  45. Nelson, Thomas J.; Masaki, Bryan; Morseth, Zachary; Webster, Dean C. (2013-11-01). "Highly functional biobased polyols and their use in melamine–formaldehyde coatings". Journal of Coatings Technology and Research. 10 (6): 757–767. doi:10.1007/s11998-013-9524-0. ISSN   1935-3804. S2CID   93718470. Archived from the original on 2023-03-14. Retrieved 2023-03-09.
  46. Jia, Lian Kun; Gong, Li Xiang; Ji, Wen Jiao; Kan, Cheng You (2011-11-01). "Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source". Chinese Chemical Letters. 22 (11): 1289–1292. doi:10.1016/j.cclet.2011.05.043. ISSN   1001-8417.
  47. Narute, Prashant; Palanisamy, Aruna (2016-01-01). "Study of the performance of polyurethane coatings derived from cottonseed oil polyol". Journal of Coatings Technology and Research. 13 (1): 171–179. doi:10.1007/s11998-015-9741-9. ISSN   1935-3804. S2CID   98726099.
  48. Malani, Ritesh S.; Malshe, Vinod C.; Thorat, Bhaskar Narayan (2022). "Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass". Journal of Coatings Technology and Research. 19 (1): 201–222. doi:10.1007/s11998-021-00490-0. ISSN   1935-3804. S2CID   235442129.
  49. Argyropoulos, John; Popa, Paul; Spilman, Gary; Bhattacharjee, Debkumar; Koonce, William (2009-12-01). "Seed oil based polyester polyols for coatings". Journal of Coatings Technology and Research. 6 (4): 501–508. doi:10.1007/s11998-008-9154-0. ISSN   1935-3804. S2CID   96095676. Archived from the original on 2023-03-14. Retrieved 2023-03-14.