Exercise intolerance | |
---|---|
Other names | Exertion intolerance |
EKG of a 70-year-old man with exercise intolerance | |
Specialty | Cardiology, pulmonology, vascular medicine/vascular surgery/phlebology, rheumatology, orthopedics, neurosurgery, neurology; exercise physiology, physical therapy/physiotherapy |
Symptoms | Dyspnea, chest pain, other pains, fatigue, inappropriate rapid heart rate response to exercise |
Duration | Variable |
Causes | Various |
Risk factors | Multiple, including sedentary lifestyle and low baseline physical activity |
Exercise intolerance is a condition of inability or decreased ability to perform physical exercise at the normally expected level or duration for people of that age, size, sex, and muscle mass. [1] It also includes experiences of unusually severe post-exercise pain, fatigue, nausea, vomiting or other negative effects. Exercise intolerance is not a disease or syndrome in and of itself, but can result from various disorders.
In most cases, the specific reason that exercise is not tolerated is of considerable significance when trying to isolate the cause down to a specific disease. Dysfunctions involving the pulmonary, cardiovascular or neuromuscular systems have been frequently found to be associated with exercise intolerance, with behavioural causes also playing a part. [2]
Exercise in this context means physical activity, not specifically exercise in a fitness program. For example, a person with exercise intolerance after a heart attack may not be able to sustain the amount of physical activity needed to walk through a grocery store or to cook a meal. In a person who does not tolerate exercise well, physical activity may cause unusual breathlessness (dyspnea), muscle pain (myalgia), tachypnoea (abnormally rapid breathing), inappropriate rapid heart rate or tachycardia (having a faster heart rate than normal), increasing muscle weakness or muscle fatigue; or exercise might result in severe headache, nausea, dizziness, occasional muscle cramps or extreme fatigue, which would make it intolerable.[ citation needed ]
The three most common reasons people give for being unable to tolerate a normal amount of exercise or physical activity are:
Metabolic myopathies are inherited inborn errors of metabolism that affect the ability of the muscle to produce ATP, either aerobically (cellular respiration) or anaerobically (glycolysis and lactic acid fermentation). The common symptom that they share is exercise intolerance, due to the low ATP reservoir within muscle cells. Depending on the enzymatic or transport protein defect, symptoms may show only upon exertion or both at rest and upon exertion. Metabolic myopathies are further categorized by the system that they affect: inborn errors of carbohydrate metabolism (including muscle GSDs), inborn errors of lipid metabolism (fatty acid metabolism disorder), inborn error of purine–pyrimidine metabolism (such as AMP deaminase deficiency), and those involving enzymes or transport proteins within the mitochondrion (mitochondrial myopathies and disorders of citric acid cycle and electron transport chain). (See metabolic myopathies for more details.)
Cytochrome b mutations can frequently cause isolated exercise intolerance and myopathy and in some cases multisystem disorders. The mitochondrial respiratory chain complex III catalyses electron transfer to cytochrome c. Complex III is embedded in the inner membrane of the mitochondria and consists of 11 subunits. Cytochrome b is encoded by the mitochondrial DNA which differs from all other subunits which are encoded in the nucleus. Cytochrome b plays a major part in the correct fabrication and function of complex III.[ citation needed ]
This mutation occurred in an 18-year-old man who had experienced exercise intolerance for most of his adolescence. Symptoms included extreme fatigue, nausea, a decline in physical activity ability and myalgia.[ citation needed ]
Individuals with elevated levels of cerebrospinal fluid can experience increased head pain, throbbing, pulsatile tinnitus, nausea and vomiting, faintness and weakness and even loss of consciousness after exercise or exertion.[ citation needed ]
A person who is not physically fit due to a sedentary lifestyle may find that vigorous exercise is unpleasant.[ citation needed ]
Objective tests for exercise intolerance normally involve performing some exercise. Common tests include stair climbing, walking for six minutes, a shuttle-walk test, a cardiac stress test, and the cardiopulmonary exercise test (CPET). [3] In the six-minute walk test, the goal is to see how far the person can walk, with approximately 600 meters being a reasonable outcome for an average person without exercise intolerance. [3] The CPET test measures exercise capacity and help determine whether the cause of exercise intolerance is due to heart disease or to other causes. [3] People who experience significant fatigue before reaching the anaerobic threshold usually have a non-cardiac cause for exercise intolerance. [3]
Additionally, testing for exercise-induced asthma may be appropriate. [3]
Exercise is key for many people with heart disease or back pain, and a variety of specific exercise techniques are available for both groups.[ citation needed ]
In individuals with heart failure and normal EF (ejection fraction), including aortic distensibility, blood pressure, LV diastolic compliance and skeletal muscle function, aerobic exercise has the potential to improve exercise tolerance. A variety of pharmacological interventions such as verapamil, enalapril, angiotensin receptor antagonism, and aldosterone antagonism could potentially improve exercise tolerance in these individuals as well. [27]
Research on individuals with Chronic obstructive pulmonary disease (COPD), has found a number of effective therapies in relation to exercise intolerance. These include:
A combination of these therapies (Combined therapies), have shown the potential to improve exercise tolerance as well. [28]
Certain conditions exist where exercise may be contraindicated or should be performed under the direction of an experienced and licensed medical professional acting within his or her scope of practice. These conditions include:[ citation needed ]
The above list does not include all potential contraindications or precautions to exercise. Although it has not been shown to promote improved muscle strength, passive range-of-motion exercise is sometimes used to prevent skin breakdown and prevent contractures in patients unable to safely self-power.[ citation needed ]
Glycogen storage disease type V, also known as McArdle's disease, is a metabolic disorder, one of the metabolic myopathies, more specifically a muscle glycogen storage disease, caused by a deficiency of myophosphorylase. Its incidence is reported as one in 100,000, roughly the same as glycogen storage disease type I.
A glycogen storage disease is a metabolic disorder caused by a deficiency of an enzyme or transport protein affecting glycogen synthesis, glycogen breakdown, or glucose breakdown, typically in muscles and/or liver cells.
Weakness is a symptom of many different medical conditions. The causes are many and can be divided into conditions that have true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular junction disorders, such as myasthenia gravis.
Leigh syndrome is an inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951. Normal levels of thiamine, thiamine monophosphate, and thiamine diphosphate are commonly found, but there is a reduced or absent level of thiamine triphosphate. This is thought to be caused by a blockage in the enzyme thiamine-diphosphate kinase, and therefore treatment in some patients would be to take thiamine triphosphate daily. While the majority of patients typically exhibit symptoms between the ages of 3 and 12 months, instances of adult onset have also been documented.
Muscle fatigue is when muscles that were initially generating a normal amount of force, then experience a declining ability to generate force. It can be a result of vigorous exercise, but abnormal fatigue may be caused by barriers to or interference with the different stages of muscle contraction. There are two main causes of muscle fatigue: the limitations of a nerve’s ability to generate a sustained signal ; and the reduced ability of the muscle fiber to contract.
In medicine, myopathy is a disease of the muscle in which the muscle fibers do not function properly. Myopathy means muscle disease. This meaning implies that the primary defect is within the muscle, as opposed to the nerves or elsewhere.
Sinus tachycardia is a sinus rhythm of the heart, with an increased rate of electrical discharge from the sinoatrial node, resulting in a tachycardia, a heart rate that is higher than the upper limit of normal.
Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. Adenosine triphosphate (ATP), the chemical used to provide energy for the cell, cannot be produced sufficiently by oxidative phosphorylation when the mitochondrion is either damaged or missing necessary enzymes or transport proteins. With ATP production deficient in mitochondria, there is an over-reliance on anaerobic glycolysis which leads to lactic acidosis either at rest or exercise-induced.
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial diseases, which also include MIDD, MERRF syndrome, and Leber's hereditary optic neuropathy. It was first characterized under this name in 1984. A feature of these diseases is that they are caused by defects in the mitochondrial genome which is inherited purely from the female parent. The most common MELAS mutation is mitochondrial mutation, mtDNA, referred to as m.3243A>G.
Chronic progressive external ophthalmoplegia (CPEO) is a type of eye disorder characterized by slowly progressive inability to move the eyes and eyebrows. It is often the only feature of mitochondrial disease, in which case the term CPEO may be given as the diagnosis. In other people suffering from mitochondrial disease, CPEO occurs as part of a syndrome involving more than one part of the body, such as Kearns–Sayre syndrome. Occasionally CPEO may be caused by conditions other than mitochondrial diseases.
Mitochondrially encoded tRNA leucine 1 (UUA/G) also known as MT-TL1 is a transfer RNA which in humans is encoded by the mitochondrial MT-TL1 gene.
Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of pyruvate to lactate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that transfers a hydride from one molecule to another.
Iron-sulfur cluster assembly enzyme ISCU, mitochondrial is a protein that in humans is encoded by the ISCU gene. It encodes an iron-sulfur (Fe-S) cluster scaffold protein involved in [2Fe-2S] and [4Fe-4S] cluster synthesis and maturation. A deficiency of ISCU is associated with a mitochondrial myopathy with lifelong exercise intolerance where only minor exertion causes tachycardia, shortness of breath, muscle weakness and myalgia.
Metabolic myopathies are myopathies that result from defects in biochemical metabolism that primarily affect muscle. They are generally genetic defects that interfere with muscle's ability to create energy, causing a low ATP reservoir within the muscle cell.
Mitochondrially encoded tRNA aspartic acid also known as MT-TD is a transfer RNA which in humans is encoded by the mitochondrial MT-TD gene.
Mitochondrially encoded tRNA glutamic acid also known as MT-TE is a transfer RNA which in humans is encoded by the mitochondrial MT-TE gene. MT-TE is a small 69 nucleotide RNA that transfers the amino acid glutamic acid to a growing polypeptide chain at the ribosome site of protein synthesis during translation.
Mitochondrially encoded tRNA phenylalanine also known as MT-TF is a transfer RNA which in humans is encoded by the mitochondrial MT-TF gene.
Mitochondrially encoded tRNA lysine also known as MT-TK is a transfer RNA which in humans is encoded by the mitochondrial MT-TK gene.
Mitochondrially encoded tRNA tyrosine, also known as MT-TY, is a transfer RNA which in humans is encoded by the mitochondrial MT-TY gene.
Sengers syndrome is a rare autosomal recessive mitochondrial disease characterised by congenital cataract, hypertrophic cardiomyopathy, muscle weakness and lactic acidosis after exercise. Biallelic pathogenic mutations in the AGK gene, which encodes the acylglycerol kinase enzyme, cause Sengers syndrome. In addition, heart disease and muscle disease are prevalent, meaning that life expectancy is short for many patients.