Diastrophic dysplasia

Last updated
Diastrophic dysplasia
Other namesDTD
Specialty Medical genetics
DurationLife-long
CausesMutations in the SLC26A2 gene
FrequencyAround 1 in 500,000 live births [1]

Diastrophic dysplasia is an autosomal recessive [2] dysplasia which affects cartilage and bone development. ("Diastrophism" is a general word referring to a twisting.) [3] Diastrophic dysplasia is due to mutations in the SLC26A2 gene.

Contents

Affected individuals have short stature with very short arms and legs and joint problems that restrict mobility.

Signs and symptoms

This condition is also characterized by an unusual clubfoot with twisting of the metatarsals, inward and upward-turning foot, tarsus varus and inversion adducted appearances. Furthermore, they classically present with scoliosis (progressive curvature of the spine) and unusually positioned thumbs (hitchhiker's thumbs). Around half of infants with diastrophic dysplasia are born with an opening in the roof of the mouth called a cleft palate. Swelling of the external ears is also common in newborns and can lead to thickened, deformed ears.

The signs and symptoms of diastrophic dysplasia are similar to those of another skeletal disorder called atelosteogenesis, type 2; however diastrophic dysplasia tends to be less severe.

Genetic

Diastrophic dysplasia has an autosomal recessive pattern of inheritance. Autorecessive.svg
Diastrophic dysplasia has an autosomal recessive pattern of inheritance.

It is one of a spectrum of skeletal disorders caused by mutations in the SLC26A2 gene. The protein encoded by this gene is essential for the normal development of cartilage and for its conversion to bone. Cartilage is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, but in adulthood this tissue continues to cover and protect the ends of bones and is present in the nose and ears. Mutations in the SLC26A2 gene alter the structure of developing cartilage, preventing bones from forming properly and resulting in the skeletal problems characteristic of diastrophic dysplasia.

This condition is an autosomal recessive disorder, meaning that the defective gene is located on an autosome, and both parents must carry one copy of the defective gene in order to have a child born with the disorder. The parents of a child with an autosomal recessive disorder are usually not affected by the disorder.

Prevalence

Diastrophic dysplasia affects about one in 500,000 births, however; in Finland, this disorder is more common, with about in 1 in 33,000 births being affected by the disorder. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Osteopetrosis</span> Rare disease of the bones

Osteopetrosis, literally "stone bone", also known as marble bone disease or Albers-Schönberg disease, is an extremely rare inherited disorder whereby the bones harden, becoming denser, in contrast to more prevalent conditions like osteoporosis, in which the bones become less dense and more brittle, or osteomalacia, in which the bones soften. Osteopetrosis can cause bones to dissolve and break.

<span class="mw-page-title-main">Atelosteogenesis, type II</span> Medical condition

Atelosteogenesis, type II is a severe disorder of cartilage and bone development. It is rare, and infants with the disorder are usually stillborn; those who survive birth die soon after.

<span class="mw-page-title-main">Spondyloperipheral dysplasia</span> Medical condition

Spondyloperipheral dysplasia is an autosomal dominant disorder of bone growth. The condition is characterized by flattened bones of the spine (platyspondyly) and unusually short fingers and toes (brachydactyly). Some affected individuals also have other skeletal abnormalities, short stature, nearsightedness (myopia), hearing loss, and mental retardation. Spondyloperipheral dysplasia is a subtype of collagenopathy, types II and XI.

Hypochondrogenesis is a severe genetic disorder causing malformations of bone growth. The condition is characterized by a short body and limbs and abnormal bone formation in the spine and pelvis.

<span class="mw-page-title-main">Otospondylomegaepiphyseal dysplasia</span> Medical condition

Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive disorder of bone growth that results in skeletal abnormalities, severe hearing loss, and distinctive facial features. The name of the condition indicates that it affects hearing (oto-) and the bones of the spine (spondylo-), and enlarges the ends of bones (megaepiphyses).

Spondyloepiphyseal dysplasia congenita is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.

<span class="mw-page-title-main">Spondyloepimetaphyseal dysplasia, Strudwick type</span> Medical condition

Spondyloepimetaphyseal dysplasia, Strudwick type is an inherited disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and problems with vision. The name of the condition indicates that it affects the bones of the spine (spondylo-) and two regions near the ends of bones. This type was named after the first reported patient with the disorder. Spondyloepimetaphyseal dysplasia, Strudwick type is a subtype of type II collagenopathies.

<span class="mw-page-title-main">Achondrogenesis type 1B</span> Medical condition

Achondrogenesis type 1B is a severe autosomal recessive skeletal disorder, invariably fatal in the perinatal period. It is distinguished by its elongated, spherical midsection, small chest, and exceedingly short limbs. The feet can turn inward and upward (clubfeet), and the fingers and toes are little. Babies affected often have a soft out-pouching at the groin or around the belly button.

Chondrodystrophy refers to a skeletal disorder caused by one of myriad genetic mutations that can affect the development of cartilage. As a very general term, it is only used in the medical literature when a more precise description of the condition is unavailable.

<span class="mw-page-title-main">Platyspondylic lethal skeletal dysplasia, Torrance type</span> Medical condition

Platyspondylic lethal skeletal dysplasia, Torrance type is a severe disorder of bone growth. People with this condition have very short arms and legs, a small chest with short ribs, underdeveloped pelvic bones, and unusually short fingers and toes (brachydactyly). This disorder is also characterized by flattened spinal bones (platyspondyly) and abnormal curvature of the spine (lordosis).

<span class="mw-page-title-main">Autosomal recessive multiple epiphyseal dysplasia</span> Medical condition

Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.

An osteochondrodysplasia, or skeletal dysplasia, is a disorder of the development of bone and cartilage. Osteochondrodysplasias are rare diseases. About 1 in 5,000 babies are born with some type of skeletal dysplasia. Nonetheless, if taken collectively, genetic skeletal dysplasias or osteochondrodysplasias comprise a recognizable group of genetically determined disorders with generalized skeletal affection. These disorders lead to disproportionate short stature and bone abnormalities, particularly in the arms, legs, and spine. Skeletal dysplasia can result in marked functional limitation and even mortality.

<span class="mw-page-title-main">Multiple epiphyseal dysplasia</span> Rare genetic disorder

Multiple epiphyseal dysplasia (MED), also known as Fairbank's disease, is a rare genetic disorder that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.

<span class="mw-page-title-main">Sulfate transporter</span> Protein-coding gene in the species Homo sapiens

The sulfate transporter is a solute carrier family protein that in humans is encoded by the SLC26A2 gene. SLC26A2 is also called the diastrophic dysplasia sulfate transporter (DTDST), and was first described by Hästbacka et al. in 1994. A defect in sulfate activation described by Superti-Furga in achondrogenesis type 1B was subsequently also found to be caused by genetic variants in the sulfate transporter gene. This sulfate (SO42−) transporter also accepts chloride, hydroxyl ions (OH), and oxalate as substrates. SLC26A2 is expressed at high levels in developing and mature cartilage, as well as being expressed in lung, placenta, colon, kidney, pancreas and testis.

<span class="mw-page-title-main">Antley–Bixler syndrome</span> Congenital disorder

Antley–Bixler syndrome is a rare, severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.

<span class="mw-page-title-main">Boomerang dysplasia</span> Medical condition

Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.

<span class="mw-page-title-main">Fibrochondrogenesis</span> Medical condition

Fibrochondrogenesis is a rare autosomal recessive form of osteochondrodysplasia, causing abnormal fibrous development of cartilage and related tissues.

<span class="mw-page-title-main">Cranio-lenticulo-sutural dysplasia</span> Medical condition

Cranio-lenticulo-sutural dysplasia is a neonatal/infancy disease caused by a disorder in the 14th chromosome. It is an autosomal recessive disorder, meaning that both recessive genes must be inherited from each parent in order for the disease to manifest itself. The disease causes a significant dilation of the endoplasmic reticulum in fibroblasts of the host with CLSD. Due to the distension of the endoplasmic reticulum, export of proteins from the cell is disrupted.

Opsismodysplasia is a type of skeletal dysplasia first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek opsismos ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by micromelia, particularly of the hands and feet, delay of ossification, platyspondyly, irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type.

Acromesomelic dysplasia is a rare skeletal disorder that causes abnormal bone and cartilage development, leading to shortening of the forearms, lower legs, hands, feet, fingers, and toes. Five different genetic mutations have been implicated in the disorder. Treatment is individualized but is generally aimed at palliating symptoms, for example, treatment of kyphosis and lumbar hyperlordosis.

References

  1. "Diastrophic dysplasia: MedlinePlus Genetics".
  2. Hästbacka J, Sistonen P, Kaitila I, Weiffenbach B, Kidd KK, De La Chapelle A (December 1991). "A linkage map spanning the locus for diastrophic dysplasia (DTD)". Genomics. 11 (4): 968–973. doi:10.1016/0888-7543(91)90021-6. PMID   1783404.
  3. "diastrophic - Definition from the Merriam-Webster Online Dictionary" . Retrieved 2009-03-12.
  4. "Diastrophic dysplasia: MedlinePlus Genetics".

This article incorporates some public domain text from The U.S. National Library of Medicine