Osteochondrodysplasia

Last updated
Osteochondrodysplasia
Other namesSkeletal dysplasia
Specialty Orthopedic

An osteochondrodysplasia, [note 1] or skeletal dysplasia, is a disorder of the development of bone and cartilage. [1] Osteochondrodysplasias are rare diseases. About 1 in 5,000 babies are born with some type of skeletal dysplasia. [2] Nonetheless, if taken collectively, genetic skeletal dysplasias or osteochondrodysplasias comprise a recognizable group of genetically determined disorders with generalized skeletal affection. These disorders lead to disproportionate short stature and bone abnormalities, particularly in the arms, legs, and spine. [3] Skeletal dysplasia can result in marked functional limitation and even mortality.

Contents

Osteochondrodysplasias or skeletal dysplasia subtypes can overlap in clinical aspects, therefore plain radiography is absolutely necessary to establish an accurate diagnosis. [4] Magnetic resonance imaging can provide further diagnostic insights and guide treatment strategies especially in cases of spinal involvement. As some disorders that cause skeletal dysplasia have treatments available, early diagnosis is particularly important, but may be challenging due to overlapping features and symptoms [5] that may also be common in unaffected children.

Types

Achondroplasia

Achondroplasia is a type of autosomal dominant genetic disorder that is the most common cause of dwarfism. It is also the most common type of non-lethal osteochondrodysplasia or skeletal dysplasia. The prevalence is approximately 1 in 25,000 births. [6] Achondroplastic dwarfs have short stature, with an average adult height of 131 cm (4 feet, 3 inches) for males and 123 cm (4 feet, 0 inches) for females. In achondroplasia the dwarfism is readily apparent at birth. likewise, craniofacial abnormalities in the form of macrocephaly and mid-face hypoplasia are present at birth. The previous clinical findings differentiate between achondroplasia and pseudoachondroplasia in which dwarfism is not recognizable at birth and craniofacial abnormalities are not considered a disease feature. Plain radiography plays an additional and important role in the differential diagnosis of achondroplasia. [4]

Pseudoachondroplasia

Pseudoachondroplasia is an osteochondrodysplasia made distinctive by disproportionate short stature, hip and knee deformities, brachydactyly (short fingers) and ligamentous laxity. It affects at least 1 in 20,000 individuals. Pseudoachondroplasia is inherited in an autosomal dominant manner and is caused solely by mutations in the cartilage oligomeric matrix protein COMP gene. [7] It’s distinguished by a moderate to severe form of disproportionate short-limb short stature. The limb shortening is fundamentally confined to the proximal limb segments i.e., Femurs and humeri. A known presenting feature is a waddling gait, noticed at the onset of walking. A prompt diagnosis of a skeletal dysplasia in general and Pseudoachondroplasia in specific is still based upon a comprehensive clinical and radiographic correlation. [4] A detailed radiographic examination of the axial and appendicular skeleton is invaluable for the differential diagnosis of Pseudoachondroplasia. Coxa vara (reduced neck shaft angle), broad femoral necks, short femurs and humeri, and bullet-shaped vertebrae are noticeable radiographic features. Additionally, the presence of metaphyseal broadening, cupping and dense line of ossification about the knee can simulate rachitic changes. These radiographic features are collectively known as rachitic-like changes. The presence of epiphyseal changes serves as an important differentiating feature from achondroplasia. [4]

Osteogenesis imperfecta

COL1A1/2-related osteogenesis imperfecta is inherited in an autosomal dominant manner. The proportion of cases caused by a De novo COL1A1 or COL1A2 mutations are the cause of osteogenesis imperfecta in the vast majority of perinatally lethal osteogenesis imperfecta, and progressively deforming osteogenesis imperfecta. In classic non-deforming osteogenesis imperfecta with blue sclerae or common variable osteogenesis imperfecta with normal sclerae, nearly 60% of cases are de novo. COL1A1/2-related osteogenesis imperfecta is identified by repeated fractures with trivial trauma, defective dentinogenesis imperfecta (DI), and hearing loss. The clinical features of COL1A1/2-related osteogenesis imperfecta can be highly variable ranging from severe and lethal perinatal fractures to individuals with minimal tendency to repeated fractures and skeletal deformities and with a normal stature and life span. In between the clinical spectrum may include individuals with various degrees of disabling skeletal deformities and short stature. [8] The radiographic findings of osteogenesis imperfecta include; long bone deformations such as bowing of the tibias and femurs, pencil-like deformity and tapering of bones, cortical thinning and rarefaction, pathologic fractures at various degrees of healing, bone shortening and vertebral wedging. [4] Accordingly, COL1A1/2-related osteogenesis imperfecta has been classified into four sub-types (I, II, III, and IV) built upon the diversity of the radioclinical features. [9]

Mucopolysaccharidosis

Mucopolysaccharidoses (MPS) constitute a commonly seen group of osteochondrodysplasias. Mucopolysaccharidosis can cause a wide spectrum of clinical and radiologic manifestations ranging from mild skeletal and systemic involvement to severe life-threatening manifestations. It is caused by a contiguous gene duplication or deletion syndrome in which multiple genes are involved. All forms of MPS are inherited in an autosomal recessive pattern, except fir of MPS II; Hunter syndrome which is X-linked. [10] They are caused by an abnormal function of the lysosomal enzymes, which blocks degradation of mucopolysaccharides and leads to accumulation of harmful byproducts, namely, heparan sulfate, dermatan sulfate, and keratan sulfate. [10] The resulting cellular malfunction can lead to a diverse array of skeletal and visceral manifestations. MPS have been subcategorized according to the type of enzyme inadequacy and glycoprotein accumulated. [11]

Cleidocranial dysostosis

Cleidocranial dysostosis is a general skeletal condition named for the collarbone (cleido-) and cranium deformities which people with it often have. Common features include: [12]

Fibrous dysplasia

Fibrous dysplasia causes bone thinning [13] and growths or lesions in one or more bones of the human body.

These lesions are tumor-like growths that consist of replacement of the medullary bone with fibrous tissue, causing the expansion and weakening of the areas of bone involved. Especially when involving the skull or facial bones, the lesions can cause externally visible deformities. The skull is often, but not necessarily, affected, and any other bones can be involved. [14]

Langer–Giedion syndrome

Langer–Giedion syndrome is a very rare genetic disorder caused by a deletion of chromosomal material. Diagnosis is usually made at birth or in early childhood. The features associated with this condition include mild to moderate learning difficulties, short stature, unique facial features, small head and skeletal abnormalities including bony growths projecting from the surfaces of bones. [15]

Maffucci syndrome

Maffucci syndrome is a sporadic disease characterized by the presence of multiple enchondromas associated with multiple simple or cavernous soft tissue hemangiomas. Also lymphangiomas may be apparent. [16]

Patients are normal at birth and the syndrome manifests during childhood and puberty. The enchondromas affect the extremities and their distribution is asymmetrical. [17]

Osteosclerosis

Osteosclerosis, an elevation in bone density, [18] is normally detected on an X-ray as an area of whiteness and is where the bone density has significantly increased.

Other

Diagnosis

The diagnosis is mainly based upon delineating the specific clinical and radiographic pattern of skeletal involvement. However, the different types of skeletal dysplasia can overlap considerably in their clinical presentation. Molecular or genetic analysis may be required to resolve diagnostic difficulties.

Differential diagnosis

Juvenile idiopathic arthritis may closely resemble the clinical presentation of some osteochondrodysplasias or genetic skeletal dysplsias. In that, both conditions can present with swollen, stiff and deformed joints. [20] [21]

Type II collagen disorders are caused by variants in the COL2A1 gene. Type II collagen disorders can result in mild disease or severe which can cause death within weeks of birth. Infants with the severe form of the disease would be born with clear indications of the disease, such as disproportionate short stature, skeletal dysplasia, distinctive eye abnormalities, cleft palate, and others. However, infants with mild disease may only experience arthritis at birth, but may progress to more severe disease later in life. Early diagnosis can be challenging. Furthermore, type II collagenopathies have significant phenotypic overlap with conditions such as MPS. Guidelines are available to ensure healthcare professional are aware of the conditions and the symptoms of disease to support efficient diagnosis. [22]

Treatment

Emerging therapies for genetic skeletal dysplasias include enzyme replacement therapy, [23] small molecule therapy, [24] hematopoietic stem cell transplantation [25] [26] and gene therapy. These therapies aim at preventing disease progression and thus improving quality of life. Enzyme replacement therapies are some of the mucopolysaccharidoses [23] and Gaucher disease. [27] Results have shown effectivity of enzyme replacement therapy. Hematopoietic stem cell transplantation can be lifesaving for some disorders, such as with malignant infantile osteopetrosis. [25] [26]

Even with treatments such as enzyme replacement therapy and stem cell transplantation, people with skeletal dysplasia often require orthopedic surgery and other disease management interventions. There is a lack of information available to support these patients as most physicians may only see one or two skeletal dysplasia patients in their lifetime. Guidelines are available to support best practices for managing several areas of skeletal dysplasia, such as the craniofacial aspects of skeletal dysplasia, [28] spinal disorders, [5] diagnosis and management of type II collagen disorders, [22] pregnancy of people with skeletal dysplasia, [29] peri-operative management, [30] and foramen magnum stenosis in achondroplasia. [31] Written and video resources for patients with skeletal dysplasia and caregivers are also available.

Management

Timely management of skeletal dysplasia is important to combat functional deterioration. [4] Due to rarity of the individual disorders that cause skeletal dysplasia, management can be challenging if a patient does not have access to a facility that has physicians who specialize in skeletal dysplasia. Guidelines have been developed for the management different aspects of skeletal dysplasia, [32] including best practices for managing craniofacial [28] and spinal manifestations, [5] diagnosis and management of type II collagen disorders, [22] pregnancy of people with skeletal dysplasia, [29] peri-operative management, [30] and foramen magnum stenosis in achondroplasia. [31] Written and video resources to support patients with skeletal dysplasia and caregivers are also available.

Footnotes

Notes

  1. Etymology: from Ancient Greek ὀστέο(ν) (ostéo(n)) 'bone',χόνδρο(ς) (khóndro(s)) 'cartiledge', δυσ (dus) 'badly',and -πλασίᾱ (-plasíā) 'formed'.

Related Research Articles

Achondroplasia is a genetic disorder with an autosomal dominant pattern of inheritance whose primary feature is dwarfism. It is the most common cause of dwarfism and affects about 1 in 27,500 people. In those with the condition, the arms and legs are short, while the torso is typically of normal length. Those affected have an average adult height of 131 centimetres for males and 123 centimetres (4 ft) for females. Other features can include an enlarged head with prominent forehead and underdevelopment of the midface. Complications can include sleep apnea or recurrent ear infections. Achondroplasia includes the extremely rare short-limb skeletal dysplasia with severe combined immunodeficiency.

<span class="mw-page-title-main">Dwarfism</span> Small size of an organism, caused by growth deficiency or genetic mutations

Dwarfism is a condition wherein an organism is exceptionally small, and mostly occurs in the animal kingdom. In humans, it is sometimes defined as an adult height of less than 147 centimetres, regardless of sex; the average adult height among people with dwarfism is 120 centimetres (4 ft). Disproportionate dwarfism is characterized by either short limbs or a short torso. In cases of proportionate dwarfism, both the limbs and torso are unusually small. Intelligence is usually normal, and most have a nearly normal life expectancy. People with dwarfism can usually bear children, though there are additional risks to the mother and child depending upon the underlying condition.

<span class="mw-page-title-main">Macrocephaly</span> Abnormally large head size

Macrocephaly is a condition in which circumference of the human head is abnormally large. It may be pathological or harmless, and can be a familial genetic characteristic. People diagnosed with macrocephaly will receive further medical tests to determine whether the syndrome is accompanied by particular disorders. Those with benign or familial macrocephaly are considered to have megalencephaly.

<span class="mw-page-title-main">Osteopetrosis</span> Rare disease of the bones

Osteopetrosis, literally "stone bone", also known as marble bone disease or Albers-Schönberg disease, is an extremely rare inherited disorder whereby the bones harden, becoming denser, in contrast to more prevalent conditions like osteoporosis, in which the bones become less dense and more brittle, or osteomalacia, in which the bones soften. Osteopetrosis can cause bones to dissolve and break.

<span class="mw-page-title-main">Osteogenesis imperfecta</span> Group of genetic disorders that mainly affect the bones

Osteogenesis imperfecta, colloquially known as brittle bone disease, is a group of genetic disorders that all result in bones that break easily. The range of symptoms—on the skeleton as well as on the body's other organs—may be mild to severe. Symptoms found in various types of OI include whites of the eye (sclerae) that are blue instead, short stature, loose joints, hearing loss, breathing problems and problems with the teeth. Potentially life-threatening complications, all of which become more common in more severe OI, include: tearing (dissection) of the major arteries, such as the aorta; pulmonary valve insufficiency secondary to distortion of the ribcage; and basilar invagination.

Short stature refers to a height of a human which is below typical. Whether a person is considered short depends on the context. Because of the lack of preciseness, there is often disagreement about the degree of shortness that should be called short. Dwarfism is the condition of being very short, often caused by a medical condition. In a medical context, short stature is typically defined as an adult height that is more than two standard deviations below a population’s mean for age and sex, which corresponds to the shortest 2.3% of individuals in that population.

<span class="mw-page-title-main">Collagen, type I, alpha 1</span> Mammalian protein found in humans

Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. COL1A1 encodes the major component of type I collagen, the fibrillar collagen found in most connective tissues, including cartilage.

<span class="mw-page-title-main">Dentinogenesis imperfecta</span> Medical condition

Dentinogenesis imperfecta (DI) is a genetic disorder of tooth development. It is inherited in an autosomal dominant pattern, as a result of mutations on chromosome 4q21, in the dentine sialophosphoprotein gene (DSPP). It is one of the most frequently occurring autosomal dominant features in humans. Dentinogenesis imperfecta affects an estimated 1 in 6,000-8,000 people.

Rhizomelia refers to either a disproportion of the length of the proximal limb, such as the shortened limbs of achondroplasia, or some other disorder of the hip or shoulder.

<span class="mw-page-title-main">Multiple epiphyseal dysplasia</span> Rare genetic disorder

Multiple epiphyseal dysplasia (MED), also known as Fairbank's disease, is a rare genetic disorder that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.

<span class="mw-page-title-main">Dentin dysplasia</span> Medical condition

Dentin dysplasia (DD) is a rare genetic developmental disorder affecting dentine production of the teeth, commonly exhibiting an autosomal dominant inheritance that causes malformation of the root. It affects both primary and permanent dentitions in approximately 1 in every 100,000 patients. It is characterized by the presence of normal enamel but atypical dentin with abnormal pulpal morphology. Witkop in 1972 classified DD into two types which are Type I (DD-1) is the radicular type, and type II (DD-2) is the coronal type. DD-1 has been further divided into 4 different subtypes (DD-1a,1b,1c,1d) based on the radiographic features.

<span class="mw-page-title-main">Pseudoachondroplasia</span> Inherited disorder of bone growth

Pseudoachondroplasia is an inherited disorder of bone growth. It is a genetic autosomal dominant disorder. It is generally not discovered until 2–3 years of age, since growth is normal at first. Pseudoachondroplasia is usually first detected by a drop of linear growth in contrast to peers, a waddling gait or arising lower limb deformities.

<span class="mw-page-title-main">Fibroblast growth factor receptor 3</span> Gene involved in the most common form of dwarfism

Fibroblast growth factor receptor 3 is a protein that in humans is encoded by the FGFR3 gene. FGFR3 has also been designated as CD333. The gene, which is located on chromosome 4, location p16.3, is expressed in tissues such as the cartilage, brain, intestine, and kidneys.

Bone disease refers to the medical conditions which affect the bone.

<span class="mw-page-title-main">Boomerang dysplasia</span> Medical condition

Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.

<span class="mw-page-title-main">Eiken syndrome</span> Medical condition

Eiken syndrome, also known as "Eiken skeletal dysplasia", is a rare autosomal bone dysplasia with a skeletal phenotype which has been described in a unique consanguineous family, where it segregates as a recessive trait. First described in 1985, the syndrome primarily affects the development of bones, leading to short stature, long limbs, and joint dislocations. Eiken syndrome is caused by mutations in the PTH1R gene, located on chromosome 3, and is involved in skeletal development.

<span class="mw-page-title-main">Bruck syndrome</span> Medical condition

Bruck syndrome is characterized as the combination of arthrogryposis multiplex congenita and osteogenesis imperfecta. Both diseases are uncommon, but concurrence is extremely rare which makes Bruck syndrome very difficult to research. Bruck syndrome is thought to be an atypical variant of osteogenesis imperfecta most resembling type III, if not its own disease. Multiple gene mutations associated with osteogenesis imperfecta are not seen in Bruck syndrome. Many affected individuals are within the same family, and pedigree data supports that the disease is acquired through autosomal recessive inheritance. Bruck syndrome has features of congenital contractures, bone fragility, recurring bone fractures, flexion joint and limb deformities, pterygia, short body height, and progressive kyphoscoliosis. Individuals encounter restricted mobility and pulmonary function. A reduction in bone mineral content and larger hydroxyapatite crystals are also detectable Joint contractures are primarily bilateral and symmetrical, and most prone to ankles. Bruck syndrome has no effect on intelligence, vision, or hearing.

Langer Mesomelic Dysplasia (LMD) is a rare congenital disorder characterised by altered bone formation, which typically causes affected individuals to experience shortening of the bones of the extremities as well as an abnormally short stature.

<span class="mw-page-title-main">Wormian bone-multiple fractures-dentinogenesis imperfecta-skeletal dysplasia syndrome</span> Medical condition

Wormian bone-multiple fractures-dentinogenesis imperfecta-skeletal dysplasia syndrome is a rare genetic bone disorder which is characterized by the presence of wormian bones in the skull, dentinogenesis imperfecta, recurrent bone fractures, hypertelorism, and eye puffiness. This disorder is unique from osteogenesis imperfecta because of the presence of cortical defects and the absence of defective collagen or osteopenia. It is not exactly known whether this condition is autosomal dominant or autosomal recessive.

<span class="mw-page-title-main">Spondyloenchondrodysplasia</span> Medical condition

Spondyloenchondrodysplasia is the medical term for a rare spectrum of symptoms that are inherited following an autosomal recessive inheritance pattern. Skeletal anomalies are the usual symptoms of the disorder, although its phenotypical nature is highly variable among patients with the condition, including symptoms such as muscle spasticity or thrombocytopenia purpura. It is a type of immunoosseous dysplasia.

References

  1. "Medcyclopaedia - Osteochondrodysplasia". Archived from the original on 2011-05-26.
  2. Geister, Krista A.; Camper, Sally A. (2015-01-01). "Advances in Skeletal Dysplasia Genetics". Annual Review of Genomics and Human Genetics. 16 (1): 199–227. doi:10.1146/annurev-genom-090314-045904. PMC   5507692 . PMID   25939055.
  3. Mortier, Geert R.; Cohn, Daniel H.; Cormier-Daire, Valerie; Hall, Christine; Krakow, Deborah; Mundlos, Stefan; Nishimura, Gen; Robertson, Stephen; Sangiorgi, Luca; Savarirayan, Ravi; Sillence, David; Superti-Furga, Andrea; Unger, Sheila; Warman, Matthew L. (2019-10-21). "Nosology and classification of genetic skeletal disorders: 2019 revision". American Journal of Medical Genetics Part A. 179 (12): 2393–2419. doi:10.1002/ajmg.a.61366. hdl: 11343/286524 . ISSN   1552-4825. PMID   31633310. S2CID   204813822.
  4. 1 2 3 4 5 6 EL-Sobky, TA; Shawky, RM; Sakr, HM; Elsayed, SM; Elsayed, NS; Ragheb, SG; Gamal, R (15 November 2017). "A systematized approach to radiographic assessment of commonly seen genetic bone diseases in children: A pictorial review". J Musculoskelet Surg Res. 1 (2): 25. doi: 10.4103/jmsr.jmsr_28_17 . S2CID   79825711.
  5. 1 2 3 White, Klane; Bober, Michael B; Cho, Tae-Joon; Goldberg, Michael J; Hoover-Fong, Julie; Irving, Melita; Kamps, Shawn; Mackenzie, William G; Raggio, Cathleen (2020-02-18). "Best practice guidelines for management of spinal disorders in skeletal dysplasia". dx.doi.org. doi:10.21203/rs.2.23876/v1. hdl: 11343/245301 . PMID   32580780 . Retrieved 2023-12-13.
  6. Wynn J, King TM, Gambello MJ, Waller DK, Hecht JT (2007). "Mortality in achondroplasia study: A 42-year follow up". Am. J. Med. Genet. A. 143 (21): 2502–11. doi:10.1002/ajmg.a.31919. PMID   17879967. S2CID   25933218.
  7. Briggs, MD; Wright, MJ (16 July 2015). "COMP-Related Pseudoachondroplasia". Pseudoachondroplasia. University of Washington, Seattle. PMID   20301660 . Retrieved 16 April 2018.
  8. Steiner, RD; Adsit, J; Basel, D (14 February 2013). "COL1A1/2 Osteogenesis Imperfecta". COL1A1/2-Related Osteogenesis Imperfecta. University of Washington, Seattle. PMID   20301472 . Retrieved 16 April 2018.
  9. "Osteogenesis Imperfecta - Children's Health Issues". Merck Manuals Consumer Version. Retrieved 2022-11-18.
  10. 1 2 "Mucopolysaccharidoses". NORD (National Organization for Rare Disorders). Retrieved 2022-11-18.
  11. "Mucopolysaccharidoses - Children's Health Issues". Merck Manuals Consumer Version. Retrieved 2022-11-18.
  12. "Cleidocranial Dysplasia". NORD (National Organization for Rare Disorders). Retrieved 2022-11-18.
  13. "fibrous dysplasia of bone" "at Dorland's Medical Dictionary
  14. "Fibrous Dysplasia". NORD (National Organization for Rare Disorders). Retrieved 2022-11-18.
  15. Devidayal, null; Marwaha, Ram Kumar (2006-02-01). "Langer-Giedion Syndrome". Indian Pediatrics. 43 (2): 174–175. ISSN   0019-6061. PMID   16528117 via PubMed.
  16. "Maffucci Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2022-11-18.
  17. "Maffucci syndrome: MedlinePlus Genetics". medlineplus.gov. Retrieved 2022-11-18.
  18. "Medcyclopaedia - Osteosclerosis" . Retrieved 2007-12-23.
  19. Marks, Dawn B.; Swanson, Todd; Sandra I Kim; Marc Glucksman (2007). Biochemistry and molecular biology . Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN   978-0-7817-8624-9.
  20. Kaya Akca, U; Simsek Kiper, PO; Urel Demir, G; Sag, E; Atalay, E; Utine, GE; Alikasifoglu, M; Boduroglu, K; Bilginer, Y; Ozen, S (April 2021). "Genetic disorders with symptoms mimicking rheumatologic diseases: A single-center retrospective study" (PDF). European Journal of Medical Genetics. 64 (4): 104185. doi:10.1016/j.ejmg.2021.104185. PMID   33662637. S2CID   232122235.
  21. Elsebaie, H; Mansour, MA; Elsayed, SM; Mahmoud, S; El-Sobky, TA (December 2021). "Multicentric Osteolysis, Nodulosis, and Arthropathy in two unrelated children with matrix metalloproteinase 2 variants: Genetic-skeletal correlations". Bone Reports. 15: 101106. doi:10.1016/j.bonr.2021.101106. PMC   8283316 . PMID   34307793.
  22. 1 2 3 Savarirayan, Ravi; Bompadre, Viviana; Bober, Michael B.; Cho, Tae-Joon; Goldberg, Michael J.; Hoover-Fong, Julie; Irving, Melita; Kamps, Shawn E.; Mackenzie, William G.; Raggio, Cathleen; Spencer, Samantha S.; White, Klane K. (September 2019). "Best practice guidelines regarding diagnosis and management of patients with type II collagen disorders". Genetics in Medicine. 21 (9): 2070–2080. doi: 10.1038/s41436-019-0446-9 . ISSN   1098-3600. PMID   30696995.
  23. 1 2 Jameson, Elisabeth; Jones, Simon; Remmington, Tracey (18 June 2019). "Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I". Cochrane Database of Systematic Reviews. 6 (4): CD009354. doi:10.1002/14651858.CD009354.pub5. PMC   6581069 . PMID   31211405.
  24. Savarirayan, Ravi; Tofts, Louise; Irving, Melita; Wilcox, William R.; Bacino, Carlos A.; Hoover-Fong, Julie; Font, Rosendo Ullot; Harmatz, Paul; Rutsch, Frank; Bober, Michael B.; Polgreen, Lynda E.; Ginebreda, Ignacio; Mohnike, Klaus; Charrow, Joel; Hoernschemeyer, Daniel (December 2021). "Safe and persistent growth-promoting effects of vosoritide in children with achondroplasia: 2-year results from an open-label, phase 3 extension study". Genetics in Medicine. 23 (12): 2443–2447. doi: 10.1038/s41436-021-01287-7 . PMC   8327889 . PMID   34341520.
  25. 1 2 Hashemi Taheri, Amir Pejman; Radmard, Amir Reza; Kooraki, Soheil; Behfar, Maryam; Pak, Neda; Hamidieh, Amir Ali; Ghavamzadeh, Ardeshir (September 2015). "Radiologic resolution of malignant infantile osteopetrosis skeletal changes following hematopoietic stem cell transplantation: Radiologic Resolution of MIOP After HSCT". Pediatric Blood & Cancer. 62 (9): 1645–1649. doi:10.1002/pbc.25524. PMID   25820806. S2CID   11287381.
  26. 1 2 El-Sobky, Tamer; El-Haddad, Alaa; Elsobky, Ezzat; Elsayed, Solaf; Sakr, Hossam (1 March 2017). "Reversal of skeletal radiographic pathology in a case of malignant infantile osteopetrosis following hematopoietic stem cell transplantation". The Egyptian Journal of Radiology and Nuclear Medicine. 48 (1): 237–243. doi: 10.1016/j.ejrnm.2016.12.013 .
  27. Shemesh, E; Deroma, L; Bembi, B; Deegan, P; Hollak, C; Weinreb, NJ; Cox, TM (27 March 2015). "Enzyme replacement and substrate reduction therapy for Gaucher disease". The Cochrane Database of Systematic Reviews. 2015 (3): CD010324. doi:10.1002/14651858.CD010324.pub2. PMC   8923052 . PMID   25812601.
  28. 1 2 Savarirayan, Ravi; Tunkel, David E.; Sterni, Laura M.; Bober, Michael B.; Cho, Tae-Joon; Goldberg, Michael J; Hoover-Fong, Julie; Irving, Melita; Kamps, Shawn E. (2021-01-05). "Best practice guidelines in managing the craniofacial aspects of skeletal dysplasia". dx.doi.org. doi:10.21203/rs.3.rs-61766/v2. hdl: 11343/272597 . PMID   33446226 . Retrieved 2023-12-13.
  29. 1 2 Savarirayan, Ravi; Rossiter, Judith P.; Hoover-Fong, Julie E.; Irving, Melita; Bompadre, Viviana; Goldberg, Michael J.; Bober, Michael B.; Cho, Tae-Joon; Kamps, Shawn E.; Mackenzie, William G.; Raggio, Cathleen; Spencer, Samantha S.; White, Klane K. (December 2018). "Best practice guidelines regarding prenatal evaluation and delivery of patients with skeletal dysplasia". American Journal of Obstetrics and Gynecology. 219 (6): 545–562. doi: 10.1016/j.ajog.2018.07.017 . ISSN   0002-9378. PMID   30048634.
  30. 1 2 White, Klane K.; Bompadre, Viviana; Goldberg, Michael J.; Bober, Michael B.; Cho, Tae-Joon; Hoover-Fong, Julie E.; Irving, Melita; Mackenzie, William G.; Kamps, Shawn E.; Raggio, Cathleen; Redding, Gregory J.; Spencer, Samantha S.; Savarirayan, Ravi; Theroux, Mary C. (August 2017). "Best practices in peri-operative management of patients with skeletal dysplasias". American Journal of Medical Genetics Part A. 173 (10): 2584–2595. doi:10.1002/ajmg.a.38357. hdl: 11343/293252 . ISSN   1552-4825. PMID   28763154. S2CID   22251966.
  31. 1 2 White, Klane K.; Savarirayan, Ravi; Goldberg, Michael J.; MacKenzie, William; Bompadre, Viviana; Bober, Michael B.; Cho, Tae-Joon; Hoover-Fong, Julie; Parnell, Shawn E.; Raggio, Cathleen; Spencer, Samantha A.; Campbell, Jeffery W.; Rapoport, David M.; Kifle, Yemiserach; Blackledge, Marcella (2016-01-11). "Response: "Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy" and "is there a correlation between sleep disordered breathing and foramen magnum stenosis in children with achondroplasia?"". American Journal of Medical Genetics Part A. 170 (4): 1101–1103. doi:10.1002/ajmg.a.37546. hdl: 11343/290811 . ISSN   1552-4825. PMID   26754314. S2CID   35361558.
  32. "Publications". Skeletal Displasia Management Consortium. 27 February 2023. Retrieved 14 December 2023.