Opsismodysplasia

Last updated
Opsismodysplasia
Other namesOPSMD [1]
Specialty Orthopedic

Opsismodysplasia is a type of skeletal dysplasia (a bone disease that interferes with bone development) first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek opsismos ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by micromelia (short or undersized bones), particularly of the hands and feet, delay of ossification (bone cell formation), platyspondyly (flattened vertebrae), irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type. [2] [3] [4] [5] [6]

Contents

Presentation

Typical ossification center formation in a developing long bone of a fetal cat. Gray79.png
Typical ossification center formation in a developing long bone of a fetal cat.

Opsismodysplasia can be characterized by a delay in bone maturation, which refers to "bone aging", an expected sequence of developmental changes in the skeleton corresponding to the chronological age of a person. Factors such as gender and ethnicity also play a role in bone age assessment. The only indicator of physical development that can be applied from birth through mature adulthood is bone age. Specifically, the age and maturity of bone can be determined by its state of ossification, the age-related process whereby certain cartilaginous and soft tissue structures are transformed into bone. The condition of epiphyseal plates (growth plates) at the ends of the long bones (which includes those of the arms, hands, legs and feet) is another measurement of bone age. The evaluation of both ossification and the state of growth plates in children is often reached through radiography (X-rays) of the carpals (bones of the hand and wrist). [7] [8] [9] [10] [11] In opsismodysplasia, the process of ossification in long bones can be disrupted by a failure of ossification centers (a center of organization in long bones, where cartilage cells designated to await and undergo ossification gather and align in rows) [12] to form. This was observed in a 16-month-old boy with the disorder, who had no apparent ossification centers in the carpals (bones of the hand and wrist) or tarsals (bones of the foot). This was associated with an absence of ossification in these bones, as well as disfigurement of the hands and feet at age two. The boy also had no ossification occurring in the lower femur (thigh bone) and upper tibia (the shin bone). [13]

Genetics

Opsismodysplasia has an autosomal recessive pattern of inheritance. Autosomal recessive - en.svg
Opsismodysplasia has an autosomal recessive pattern of inheritance.

Opsismodysplasia is inherited in an autosomal recessive manner. [5] This means the defective gene(s) responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder. Currently, no specific mutation in any gene has been found to cause the disorder. [4] [6]

It appears that the gene inositol polyphosphate phosphatase-like 1 is the cause of this condition in at least some cases. [14]

Diagnosis

Epidemiology

Opsismodysplasia is a very rare disorder, and is estimated to occur in less than 1 in 1,000,000 people. [6]

History

The disorder was first described by Jonathan Zonana and associates in 1977. [2] Further observation of four cases of it was reported by Pierre Maroteaux and colleagues in 1982, [15] and Maroteaux was the first to call the disorder "opsismodysplasia", in a 1984 journal report of three affected individuals. [3] The name derives from the Greek opsismos, meaning "late", [4] while the term dysplasia refers to development. [6]

Related Research Articles

Atelosteogenesis, type II Medical condition

Atelosteogenesis, type II is a severe disorder of cartilage and bone development. It is rare, and infants with the disorder are usually stillborn; however, those who survive birth die soon after

Spondyloperipheral dysplasia Medical condition

Spondyloperipheral dysplasia is an autosomal dominant disorder of bone growth. The condition is characterized by flattened bones of the spine (platyspondyly) and unusually short fingers and toes (brachydactyly). Some affected individuals also have other skeletal abnormalities, short stature, nearsightedness (myopia), hearing loss, and mental retardation. Spondyloperipheral dysplasia is a subtype of collagenopathy, types II and XI.

Otospondylomegaepiphyseal dysplasia Medical condition

Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive disorder of bone growth that results in skeletal abnormalities, severe hearing loss, and distinctive facial features. The name of the condition indicates that it affects hearing (oto-) and the bones of the spine (spondylo-), and enlarges the ends of bones (megaepiphyses).

Collagen, type II, alpha 1

Collagen, type II, alpha 1 , also known as COL2A1, is a human gene that provides instructions for the production of the pro-alpha1(II) chain of type II collagen.

Impossible syndrome Medical condition

Impossible Syndrome, is a complex combination of human congenital malformations.

Autosomal recessive multiple epiphyseal dysplasia Medical condition

Autosomal recessive multiple epiphyseal dysplasia (ARMED), also called epiphyseal dysplasia, multiple, 4 (EDM4), multiple epiphyseal dysplasia with clubfoot or –with bilayered patellae, is an autosomal recessive congenital disorder affecting cartilage and bone development. The disorder has relatively mild signs and symptoms, including joint pain, scoliosis, and malformations of the hands, feet, and knees.

Osteochondrodysplasia is a general term for a disorder of the development (dysplasia) of bone ("osteo") and cartilage ("chondro"). Osteochondrodysplasias are rare diseases. About 1 in 5,000 babies are born with some type of skeletal dysplasia. Nonetheless, if taken collectively, genetic skeletal dysplasias or osteochondrodysplasias comprise a recognizable group of genetically determined disorders with generalized skeletal affection. Osteochondrodysplasias can result in marked functional limitation and even mortality.

Multiple epiphyseal dysplasia Osteochondrodysplasia disease that has material basis in defective cartilage mineralization into bone

Fairbank's disease or multiple epiphyseal dysplasia (MED) is a rare genetic disorder that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.

Renal dysplasia-limb defects syndrome Medical condition

Renal dysplasia-limb defects syndrome, also known as Ulbright–Hodes syndrome, is a very rare autosomal recessive congenital disorder. It has been described in three infants, all of whom died shortly after birth.

Keutel syndrome Medical condition

Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.

Antley–Bixler syndrome Medical condition

Antley–Bixler syndrome, is a rare, very severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.

Boomerang dysplasia Medical condition

Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.

EEM syndrome Medical condition

EEM syndrome is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm, and also the hands, feet and eyes.

Fibrochondrogenesis Medical condition

Fibrochondrogenesis is a rare autosomal recessive form of osteochondrodysplasia, causing abnormal fibrous development of cartilage and related tissues.

Gerodermia osteodysplastica Medical condition

Gerodermia osteodysplastica (GO), is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.

X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.

Hydrops-ectopic calcification-moth-eaten skeletal dysplasia Medical condition

Hydrops-ectopic calcification-moth-eaten skeletal dysplasia is a defect in cholesterol biosynthesis. Greenberg characterized the condition in 1988.

Spondylo-meta-epiphyseal dysplasia Medical condition

Spondylo-meta-epiphyseal dysplasia (SMED) is a rare autosomal-recessive disease that causes skeletal disorders. SMED is thought to be caused by a mutation in the Discoidin Domain Receptor 2 (DDR2) gene.

Parastremmatic dwarfism Medical condition

Parastremmatic dwarfism is a rare bone disease that features severe dwarfism, thoracic kyphosis, a distortion and twisting of the limbs, contractures of the large joints, malformations of the vertebrae and pelvis, and incontinence. The disease was first reported in 1970 by Leonard Langer and associates; they used the term parastremmatic from the Greek parastremma, or distorted limbs, to describe it. On X-rays, the disease is distinguished by a "flocky" or lace-like appearance to the bones. The disease is congenital, which means it is apparent at birth. It is caused by a mutation in the TRPV4 gene, located on chromosome 12 in humans. The disease is inherited in an autosomal dominant manner.

Acromesomelic dysplasia is a rare skeletal disorder that causes abnormal bone and cartilage development, leading to shortening of the forearms, lower legs, hands, feet, fingers, and toes. Five different genetic mutations have been implicated in the disorder. Treatment is individualized but is generally aimed at palliating symptoms, for example, treatment of kyphosis and lumbar hyperlordosis.

References

  1. "OMIM Entry - # 258480 - OPSISMODYSPLASIA; OPSMD". omim.org. Retrieved 27 June 2019.
  2. 1 2 Zonana, J.; Rimoin, D.; Lachman, R.; Cohen, A. (1977). "A unique chondrodysplasia secondary to a defect in chondroosseous transformation". Birth Defects Original Article Series. 13 (3D): 155–163. PMID   922134.
  3. 1 2 Maroteaux, P.; Stanescu, V.; Stanescu, R.; Le Marec, B.; Moraine, C.; Lejarraga, H. (Sep 1984). "Opsismodysplasia: A new type of chondrodysplasia with predominant involvement of the bones of the hand and the vertebrae". American Journal of Medical Genetics. 19 (1): 171–182. doi:10.1002/ajmg.1320190117. PMID   6496568.
  4. 1 2 3 Cormier-Daire, V.; Delezoide, A.; Philip, N.; Marcorelles, P.; Casas, K.; Hillion, Y.; Faivre, L.; Rimoin, D.; Munnich, A.; Maroteaux, P.; Le Merrer, M. (Mar 2003). "Clinical, radiological, and chondro-osseous findings in opsismodysplasia: Survey of a series of 12 unreported cases". Journal of Medical Genetics. 40 (3): 195–200. doi:10.1136/jmg.40.3.195. PMC   1735387 . PMID   12624139.
  5. 1 2 Tyler, K.; Sarioglu, N.; Kunze, J. (Mar 1999). "Five familial cases of opsismodysplasia substantiate the hypothesis of autosomal recessive inheritance". American Journal of Medical Genetics. 83 (1): 47–52. doi:10.1002/(SICI)1096-8628(19990305)83:1<47::AID-AJMG9>3.0.CO;2-5. PMID   10076884.
  6. 1 2 3 4 "::Opsismodysplasia". Orphanet. Retrieved April 15, 2011.
  7. Zerin, J.; Hernandez, R. (1991). "Approach to skeletal maturation". Hand Clinics. 7 (1): 53–62. doi:10.1016/S0749-0712(21)01310-X. PMID   2037639.
  8. Gilli, G. (1996). "The assessment of skeletal maturation". Hormone Research. 45 Suppl 2 (2): 49–52. doi:10.1159/000184847. PMID   8805044.
  9. Cox, L. (1997). "The biology of bone maturation and ageing". Acta Paediatrica. Supplement. 423: 107–108. doi:10.1111/j.1651-2227.1997.tb18386.x. PMID   9401555. S2CID   42513080.
  10. Zhang, A.; Gertych, A.; Liu, B. (Jun–Jul 2007). "Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones". Computerized Medical Imaging and Graphics. 31 (4–5): 299–310. doi:10.1016/j.compmedimag.2007.02.008. PMC   2041862 . PMID   17369018.
  11. Gertych, A.; Zhang, A.; Sayre, J.; Pospiechkurkowska, S.; Huang, H. (Jun–Jul 2007). "Bone age assessment of children using a digital hand atlas". Computerized Medical Imaging and Graphics. 31 (4–5): 322–331. doi:10.1016/j.compmedimag.2007.02.012. PMC   1978493 . PMID   17387000.
  12. Gray, Henry; Spitzka, Edward Anthony (1910). Anatomy, descriptive and applied. the University of California: Lea & Febiger. p.  44. ossification.
  13. Beemer, F. A.; Kozlowski, K. S. (Feb 1994). "Additional case of opsismodysplasia supporting autosomal recessive inheritance". American Journal of Medical Genetics. 49 (3): 344–347. doi:10.1002/ajmg.1320490321. PMID   8209898.
  14. Chai EC, Singaraja RR (2013) Opsismodysplasia: Implications of mutations in the developmental gene INPPL1. Clin Genet doi: 10.1111/cge.12136
  15. Maroteaux, P.; Stanescu, V.; Stanescu, R. (1982). "Four recently described osteochondrodysplasias". Progress in Clinical and Biological Research. 104: 345–350. PMID   7163279.
Classification
D
External resources