Isopropylamine

Last updated
Isopropylamine
IPrNH2.svg
Isopropylamine molecule ball.png
Names
Preferred IUPAC name
Propan-2-amine
Other names
  • (Propan-2-yl)amine
  • Isopropylamine
  • 2-aminopropane
  • 2-propanamine
  • monoisopropylamine
  • MIPA
Identifiers
3D model (JSmol)
3DMet
605259
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.783 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-860-9
KEGG
MeSH 2-propylamine
PubChem CID
RTECS number
  • NT8400000
UNII
UN number 1221
  • InChI=1S/C3H9N/c1-3(2)4/h3H,4H2,1-2H3 Yes check.svgY
    Key: JJWLVOIRVHMVIS-UHFFFAOYSA-N Yes check.svgY
  • CC(C)N
Properties
C3H9N
Molar mass 59.112 g·mol−1
AppearanceColourless liquid
Odor "Fishy"; ammoniacal
Density 688 mg mL−1
Melting point −95.20 °C; −139.36 °F; 177.95 K
Boiling point 31 to 35 °C; 88 to 95 °F; 304 to 308 K
Miscible
log P 0.391
Vapor pressure 63.41 kPa (at 20 °C)
1.3742
Thermochemistry
163.85 J K−1 mol−1
Std molar
entropy
(S298)
218.32 J K−1 mol−1
−113.0–−111.6 kJ mol−1
−2.3540–−2.3550 MJ mol−1
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H224, H315, H319, H335
P210, P261, P305+P351+P338
Flash point −18 °C (0 °F; 255 K)
402 °C (756 °F; 675 K)
Explosive limits 2–10.4%
Lethal dose or concentration (LD, LC):
  • 380 mg kg−1(dermal, rabbit)
  • 550 mg kg−1(oral, rat)
4,000 ppm (rat, 4 hr) [1]
7000 ppm (mouse, 40 min) [1]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (12 mg/m3) [2]
REL (Recommended)
None established [2]
IDLH (Immediate danger)
750 ppm [2]
Related compounds
Related alkanamines
Related compounds
2-Methyl-2-nitrosopropane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Isopropylamine (monoisopropyl amine, MIPA, 2-Propylamine) is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry. [3]

Contents

Reactions

Isopropylamine exhibits reactions typical of other simple alkyl amines, i.e. protonation, alkylation, acylation, condensation with carbonyls. Like other simple aliphatic amines, isopropylamine is a weak base: the pKa of [(CH3)2)CHNH3]+ is 10.63. [4]

Preparation and use

Isopropylamine can be obtained by reaction of isopropyl alcohol with ammonia in presence of a catalyst: [3]

(CH3)2CHOH + NH3 → (CH3)2CHNH2 + H2O

Isopropylamine is a building block for the preparation of many herbicides and pesticides including atrazine, bentazon, glyphosate, imazapyr, ametryne, desmetryn, prometryn, pramitol, dipropetryn, propazine, fenamiphos, and iprodione. [3] It is a regulating agent for plastics, intermediate in organic synthesis of coating materials, plastics, pesticides, rubber chemicals, pharmaceuticals and others, and as an additive in the petroleum industry.

Related Research Articles

<span class="mw-page-title-main">Isocyanate</span> Chemical group (–N=C=O)

In organic chemistry, isocyanate is the functional group with the formula R−N=C=O. Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound with two isocyanate groups is known as a diisocyanate. Diisocyanates are manufactured for the production of polyurethanes, a class of polymers.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

<span class="mw-page-title-main">Methylamine</span> Organic chemical compound

Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.

<span class="mw-page-title-main">Formamide</span> Chemical compound

Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, and in the manufacture of hydrocyanic acid. It has been used as a softener for paper and fiber. It is a solvent for many ionic compounds. It has also been used as a solvent for resins and plasticizers. Some astrobiologists suggest that it may be an alternative to water as the main solvent in other forms of life.

Dimethylformamide is an organic compound with the chemical formula HCON(CH3)2. Its structure is HC(=O)−N(−CH3)2. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, treating morpholine with hydrochloric acid generates the salt morpholinium chloride. It is a colorless liquid with a weak, ammonia- or fish-like odor. The naming of morpholine is attributed to Ludwig Knorr, who incorrectly believed it to be part of the structure of morphine.

Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a common abbreviation. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia. Like diisopropylethylamine (Hünig's base), triethylamine is commonly employed in organic synthesis, usually as a base.

<i>tert</i>-Butyl alcohol Chemical compound

tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.

<span class="mw-page-title-main">Dimethylacetamide</span> Chemical compound

Dimethylacetamide (DMAc or DMA) is the organic compound with the formula CH3C(O)N(CH3)2. This colorless, water-miscible, high-boiling liquid is commonly used as a polar solvent in organic synthesis. DMA is miscible with most other solvents, although it is poorly soluble in aliphatic hydrocarbons.

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

<span class="mw-page-title-main">Ethylenediamine</span> Chemical compound

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Diethylenetriamine</span> Chemical compound

Diethylenetriamine (abbreviated Dien or DETA) and also known as 2,2’-Iminodi(ethylamine)) is an organic compound with the formula HN(CH2CH2NH2)2. This colourless hygroscopic liquid is soluble in water and polar organic solvents, but not simple hydrocarbons. Diethylenetriamine is structural analogue of diethylene glycol. Its chemical properties resemble those for ethylene diamine, and it has similar uses. It is a weak base and its aqueous solution is alkaline. DETA is a byproduct of the production of ethylenediamine from ethylene dichloride.

<span class="mw-page-title-main">Ethylamine</span> Chemical compound

Ethylamine, also known as ethanamine, is an organic compound with the formula CH3CH2NH2. This colourless gas has a strong ammonia-like odor. It condenses just below room temperature to a liquid miscible with virtually all solvents. It is a nucleophilic base, as is typical for amines. Ethylamine is widely used in chemical industry and organic synthesis.

<span class="mw-page-title-main">Diethylamine</span> Chemical compound

Diethylamine is an organic compound with the formula (CH3CH2)2NH. It is a secondary amine. It is a flammable, weakly alkaline liquid that is miscible with most solvents. It is a colorless liquid, but commercial samples often appear brown due to impurities. It has a strong ammonia-like odor.

Diisopropylamine is a secondary amine with the chemical formula (Me2CH)2NH (Me = methyl). Diisopropylamine is a colorless liquid with an ammonia-like odor. Its lithium derivative, lithium diisopropylamide, known as LDA is a widely used reagent.

<span class="mw-page-title-main">Cyclohexylamine</span> Chemical compound

Cyclohexylamine is an organic compound, belonging to the aliphatic amine class. It is a colorless liquid, although, like many amines, samples are often colored due to contaminants. It has a fishy odor and is miscible with water. Like other amines, it is a weak base, compared to strong bases such as NaOH, but it is a stronger base than its aromatic analog, aniline.

<i>n</i>-Butylamine Chemical compound

n-Butylamine is an organic compound (specifically, an amine) with the formula CH3(CH2)3NH2. This colourless liquid is one of the four isomeric amines of butane, the others being sec-butylamine, tert-butylamine, and isobutylamine. It is a liquid having the fishy, ammonia-like odor common to amines. The liquid acquires a yellow color upon storage in air. It is soluble in all organic solvents. Its vapours are heavier than air and it produces toxic oxides of nitrogen during combustion.

<span class="mw-page-title-main">Chloroacetyl chloride</span> Chemical compound

Chloroacetyl chloride is a chlorinated acyl chloride. It is a bifunctional compound, making it a useful building block chemical.

Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH2CN. It is the simplest cyanohydrin and it is derived from formaldehyde. It is a colourless liquid that dissolves in water and ether. Because glycolonitrile decomposes readily into formaldehyde and hydrogen cyanide, it is listed as an extremely hazardous substance. In January 2019, astronomers reported the detection of glycolonitrile, another possible building block of life among other such molecules, in outer space.

4,4′-Methylenedianiline (MDA) is an organic compound with the formula CH2(C6H4NH2)2. It is a colorless solid, although commercial samples can appear yellow or brown. It is produced on an industrial scale, mainly as a precursor to polyurethanes.

References

  1. 1 2 "Isopropylamine". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health. 4 December 2014. Retrieved 14 April 2015.
  2. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0360". National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 3 Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi : 10.1002/14356007.a02_001
  4. H. K. Hall, Jr. (1957). "Correlation of the Base Strengths of Amines". J. Am. Chem. Soc. 79 (20): 5441–5444. doi:10.1021/ja01577a030.