Diphenadione

Last updated
Diphenadione
Diphenadione2.svg
Diphenadione 3D ball.png
Names
Preferred IUPAC name
2-(Diphenylacetyl)-1H-indene-1,3(2H)-dione
Other names
Diphacinone; Diphenandione, Difenacin, [1] Ratindan [2] [3]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.001.304 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C23H16O3/c24-21-17-13-7-8-14-18(17)22(25)20(21)23(26)19(15-9-3-1-4-10-15)16-11-5-2-6-12-16/h1-14,19-20H
    Key: JYGLAHSAISAEAL-UHFFFAOYSA-N
  • InChI=1/C23H16O3/c24-21-17-13-7-8-14-18(17)22(25)20(21)23(26)19(15-9-3-1-4-10-15)16-11-5-2-6-12-16/h1-14,19-20H
    Key: JYGLAHSAISAEAL-UHFFFAOYAR
  • O=C2c1ccccc1C(=O)C2C(=O)C(c3ccccc3)c4ccccc4
Properties
C23H16O3
Molar mass 340.378 g·mol−1
Pharmacology
B01AA10 ( WHO )
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Diphenadione is a vitamin K antagonist that has anticoagulant effects and is used as a rodenticide against rats, mice, voles, ground squirrels and other rodents. The chemical compound is an anti-coagulant with active half-life longer than warfarin and other synthetic 1,3-indandione anticoagulants. [3] [4]

It is toxic to mammals, in all forms; exposure and oral ingestion of the toxin may cause irregular heartbeat and major maladies associated with its impact on blood clotting, depending on dose. [5] As a "second-generation" anticoagulant, diphenadione is more toxic than the first generation compounds (e.g., warfarin). [6] :436 For purposes of treating toxicity on exposure, diphenadione is grouped with other vitamin K antagonists (coumarins and indandiones); despite being directed at rodents and being judged as less hazardous to humans and domestic animals than other rodenticides in use[ when? ] (by the U.S. Environmental Protection Agency), indandione anticoagulants, nevertheless, "may cause human toxicity at a much lower dose than conventional 'first-generation anticoagulants'… and can bioaccumulate in the liver." [7] :173

Related Research Articles

<span class="mw-page-title-main">Vitamin K</span> Fat-soluble vitamers

Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.

<span class="mw-page-title-main">Warfarin</span> Anticoagulant medication

Warfarin is an anticoagulant used as a medication under several brand names including Coumadin. While the drug is described as a "blood thinner", it does not reduce viscosity but rather inhibits coagulation. Accordingly, it is commonly used to prevent blood clots in the circulatory system such as deep vein thrombosis and pulmonary embolism, and to protect against stroke in people who have atrial fibrillation, valvular heart disease, or artificial heart valves. Less commonly, it is used following ST-segment elevation myocardial infarction (STEMI) and orthopedic surgery. It is usually taken by mouth, but may also be administered intravenously.

<span class="mw-page-title-main">Cholecalciferol</span> Vitamin D3, a chemical compound

Cholecalciferol, also known as vitamin D3 and colecalciferol, is a type of vitamin D that is made by the skin when exposed to UV-B light; it is found in some foods and can be taken as a dietary supplement.

<span class="mw-page-title-main">Rodenticide</span> Chemical used to kill rodents

Rodenticides are chemicals made and sold for the purpose of killing rodents. While commonly referred to as "rat poison", rodenticides are also used to kill mice, woodchucks, chipmunks, porcupines, nutria, beavers, and voles. Despite the crucial roles that rodents play in nature, there are times when they need to be controlled.

<span class="mw-page-title-main">Coumarin</span> Aromatic chemical compound

Coumarin or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.

<span class="mw-page-title-main">Bromethalin</span> Chemical compound

Bromethalin is a neurotoxic rodenticide that damages the central nervous system.

<span class="mw-page-title-main">Calcium phosphide</span> Chemical compound

Calcium phosphide (CP) is the inorganic compound with the formula Ca3P2. It is one of several phosphides of calcium, being described as the salt-like material composed of Ca2+ and P3−. Other, more exotic calcium phosphides have the formula CaP / Ca2P2, CaP3, and Ca5P8.

<span class="mw-page-title-main">Coumatetralyl</span> Chemical compound

Coumatetralyl is an anticoagulant of the 4-hydroxycoumarin vitamin K antagonist type used as a rodenticide.

<span class="mw-page-title-main">Tetramethylenedisulfotetramine</span> Chemical compound

Tetramethylenedisulfotetramine (TETS) is an organic compound used as a rodenticide. It is an odorless, tasteless white powder that is slightly soluble in water, DMSO and acetone, and insoluble in methanol and ethanol. It is a sulfamide derivative. It can be synthesized by reacting sulfamide with formaldehyde solution in acidified water. When crystallized from acetone, it forms cubic crystals with a melting point of 255–260 °C.

<span class="mw-page-title-main">Phenprocoumon</span> Drug

Phenprocoumon is a long-acting blood thinner drug to be taken by mouth, and a coumarin derivative. It acts as a vitamin K antagonist and inhibits blood clotting (coagulation) by blocking synthesis of coagulation factors II, VII, IX and X. It is used for the prophylaxis and treatment of thromboembolic disorders such as heart attacks and pulmonary (lung) embolism. The most common adverse effect is bleeding. The drug interacts with a large number of other medications, including aspirin and St John's Wort. It is the standard coumarin used in Germany, Austria, and other European countries.

<span class="mw-page-title-main">Dicoumarol</span> Chemical compound

Dicoumarol (INN) or dicumarol (USAN) is a naturally occurring anticoagulant drug that depletes stores of vitamin K. It is also used in biochemical experiments as an inhibitor of reductases.

<span class="mw-page-title-main">4-Hydroxycoumarins</span> Group of anticoagulant drugs

4-Hydroxycoumarins are a class of vitamin K antagonist (VKA) anticoagulant drug molecules. Chemically, they are derived from coumarin by adding a hydroxy group at the 4 position to obtain 4-hydroxycoumarin, then adding a large aromatic substituent at the 3-position. The large 3-position substituent is required for anticoagulant activity.

<span class="mw-page-title-main">Brodifacoum</span> Chemical compound

Brodifacoum is a highly lethal 4-hydroxycoumarin vitamin K antagonist anticoagulant poison. In recent years, it has become one of the world's most widely used pesticides. It is typically used as a rodenticide, but is also used to control larger pests such as possums.

<span class="mw-page-title-main">Bromadiolone</span> Chemical compound

Bromadiolone is a potent anticoagulant rodenticide. It is a second-generation 4-hydroxycoumarin derivative and vitamin K antagonist, often called a "super-warfarin" for its added potency and tendency to accumulate in the liver of the poisoned organism. When first introduced to the UK market in 1980, it was effective against rodent populations that had become resistant to first generation anticoagulants.

<span class="mw-page-title-main">Vitamin K antagonist</span> Group of substances

Vitamin K antagonists (VKA) are a group of substances that reduce blood clotting by reducing the action of vitamin K. The term "vitamin K antagonist" is technically a misnomer, as the drugs do not directly antagonize the action of vitamin K in the pharmacological sense, but rather the recycling of vitamin K. Vitamin K antagonists (VKAs) have been the mainstay of anticoagulation therapy for more than 50 years.

<span class="mw-page-title-main">Flocoumafen</span> Chemical compound

Flocoumafen is a fluorinated, second-generation anticoagulant of the 4-hydroxycoumarin vitamin K antagonist type. It is a second generation chemical in this class, used commercially as a rodenticide. It has a very high toxicity and is restricted to indoor use and sewers. This restriction is mainly due to the increased risk to non-target species, especially due to its tendency to bio-accumulate in exposed organisms. Studies have shown that rodents resistant to first-generation anticoagulants can be adequately controlled with flocoumafen. It was synthesized in 1984 by Shell International Chemical.

<span class="mw-page-title-main">Chlorophacinone</span> Chemical compound

Chlorophacinone is a first-generation anticoagulant rodenticide. The mechanism of action results in internal bleeding due to non-functional clotting factors. It was used as a toxin to control rodent populations. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

<span class="mw-page-title-main">Crimidine</span> Chemical compound

Crimidine is a convulsant poison used as a rodenticide. Crimidine was originally known by its product name, Castrix. It was originally produced in the 1940s by the conglomerate, IG Farben. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. It is also no longer used in the United States as a rodenticide, but is still used to this day in other countries.

d-CON American brand of rodent control products

d-CON is a brand of rodent control products, which is distributed and owned in the United States by the UK-based consumer goods company Reckitt.

<span class="mw-page-title-main">Coumarin derivatives</span> Organic compounds derived from coumarin

Coumarin derivatives are derivatives of coumarin and are considered phenylpropanoids. Among the most important derivatives are the 4-hydroxycoumarins, which exhibit anticoagulant properties, a characteristic not present for coumarin itself.

References

  1. Kukovinets, O. S.; Abdullin, M. I.; Zainullin, R. A.; Kunakova, R. V. (2008). Chemical and Physical Methods for Protecting Biopolymers Against Pests. New York: Nova Biomedical Books. p. 185. ISBN   9781604563313.
  2. "Catalog.md" . Retrieved 3 April 2020.
  3. 1 2 EXTOXNET Staff (1993-09-01). "Diphacinone". EXTOXNET. Retrieved 2011-12-07.
  4. Meister, R.T. (ed.). 1992. Farm Chemicals Handbook '92. Meister Publishing Company, Willoughby, OH.
  5. Bell Laboratories, Inc. July, 1990. Diphacinone Technical: MSDS. Bell Labs, Madison, WI.
  6. Murphy, Michael J.; Talcott, Patricia A. (2013). "Anticoagulant Rodenticides (Ch. 32)". In Peterson, Michael E.; Talcott, Patricia A. (eds.). Small Animal Toxicology (3rd ed.). St. Louis, MO, US: Elsevier Health Sciences. pp. 435–446, esp. 435–439. ISBN   978-0323241984 . Retrieved 5 April 2016.
  7. Reigart, J. Routt & Roberts, James R. (Eds.) (2013). "Rodenticides (Ch. 18, § Coumarins and Indandiones)" (PDF). Recognition and Management of Pesticide Poisonings (6th ed.). Corvallis, OR, US: National Pesticide Information Center (Oregon State University and the U.S. Environmental Protection Agency . Retrieved 5 April 2016. The first-generation anticoagulants, for example, are reasonably effective against pest rodents and are less toxic than second-generation anticoagulants… / Very small amounts of the extremely toxic rodenticides sodium fluoroacetate, fluoracetamide, strychnine, crimidine, yellow phosphorus, zinc phosphide and thallium sulfate can cause severe and even fatal poisoning. Cholecalciferol is also a highly toxic agent. The anticoagulants, indandiones and red squill, are less hazardous to humans and domestic animals. Some of the newer anticoagulant compounds, termed 'second-generation anticoagulants,' may cause human toxicity at a much lower dose than conventional 'first-generation anticoagulants'… and can bioaccumulate in the liver…{{cite book}}: CS1 maint: multiple names: authors list (link) [p. 173, emphasis in source].

Further reading