Phenprocoumon

Last updated
Phenprocoumon
Phenprocoumon.svg
Clinical data
Trade names Marcoumar, Marcumar, Falithrom
AHFS/Drugs.com International Drug Names
MedlinePlus a699003
Pregnancy
category
Routes of
administration
By mouth
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability 100% [1]
Protein binding 99%
Metabolism Liver (CYP2C9, CYP3A4)
Metabolites Hydroxyl derivatives, glucuronides
Elimination half-life 6–7 days
Excretion Kidney
Identifiers
  • (RS)-4-hydroxy-3-(1-phenylpropyl)-2H-chromen-2-one
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.006.464 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C18H16O3
Molar mass 280.323 g·mol−1
3D model (JSmol)
Melting point 177–181 °C (351–358 °F)
  • OC=1c3ccccc3OC(=O)C=1C(CC)c2ccccc2
  • InChI=1S/C18H16O3/c1-2-13(12-8-4-3-5-9-12)16-17(19)14-10-6-7-11-15(14)21-18(16)20/h3-11,13,19H,2H2,1H3 Yes check.svgY
  • Key:DQDAYGNAKTZFIW-UHFFFAOYSA-N Yes check.svgY
   (verify)

Phenprocoumon (marketed under the brand names Marcoumar, Marcumar and Falithrom) is a long-acting blood thinner drug to be taken by mouth, and a coumarin derivative. [2] It acts as a vitamin K antagonist and inhibits blood clotting (coagulation) by blocking synthesis of coagulation factors II, VII, IX and X. It is used for the prophylaxis and treatment of thromboembolic disorders such as heart attacks and pulmonary (lung) embolism. The most common adverse effect is bleeding. The drug interacts with a large number of other medications, including aspirin and St John's Wort. It is the standard coumarin used in Germany, [3] Austria, [4] and other European countries. [5]

Contents

Medical uses

Marcoumar package Austria.JPG
An Austrian package and bottle of Marcoumar
Marcoumar tablets.jpg
Marcoumar 3 mg tablets (scale in cm)

Phenprocoumon is used for the prophylaxis and treatment of thromboembolic disorders after heart bypass surgery and myocardial infarction (heart attack), long-term treatment of myocardial infarction with increased risk of thromboembolism, thrombophilia (abnormal blood clotting), antithrombin III deficiency, atrial fibrillation (a kind of abnormal heart rhythm) with artery embolisms, after venous thrombosis, pulmonary embolism and artificial heart valve surgery, as well as chronic ventricular aneurysm (bulging of the heart wall) and congestive cardiomyopathy (enlarged heart). [1]

Dosing

When phenprocoumon therapy is started, the clotting tendency of the blood is measured daily by determining the prothrombin time, more specifically the international normalized ratio (INR). After the desired INR has been reached, which typically takes five to six days, intervals between measurements are increased to twice or three times a week for a week or two, then to two to four weeks if the patient is stable. INR monitoring continues throughout the therapy, often for life. [1] [4] This is necessary because people need different doses depending on the genetic makeup of their enzymes, activity of coagulation factors, vitamin K concentrations in the body, other drugs, and diet. [2] [6]

If a fast onset of action is needed, as after an acute thromboembolism, phenprocoumon therapy has to be accompanied with a subcutaneous or intravenous low-molecular-weight heparin (LMWH) for the first 36 to 72 hours. Similarly, if the blood thinning effect has to be stopped before a surgery, phenprocoumon is paused up to two weeks beforehand, and the therapy gap is "bridged" with LMWH until after the surgery. Alternatively, phenprocoumon can be antagonised with vitamin K, for example before an unplanned surgery, or when severe bleeding occurs after overdosing. [1] [4]

Contraindications

Phenprocoumon is contraindicated when bleeding risks exceed the potential benefits, for example in people with severe bleeding diathesis, peptic ulcers, endocarditis, aortic aneurysm, brain aneurysm, serious injuries, or after brain surgery. During pregnancy, it is contraindicated except to prevent coagulation in women with life-threatening heparin intolerance. [4]

Adverse effects

The most common adverse effect is bleeding. It occurs in 5–25% of patients and ranges from harmless nosebleeds to life-threatening bleeding in the brain, gut wall, adrenal glands, pleural cavity, pericardium, or subdural space. Other side effects are uncommon and include headache, nausea, reversible hair loss, purple toe syndrome, and allergic rashes. [1] [4] A rare but severe adverse effect is warfarin necrosis of the skin and subcutaneous tissue during the first days of treatment. [7] [8]

Overdose

Mild cases of overdosing are characterised by minor bleeding and/or bruising; they can usually be controlled by reducing the dose. Taking a large amount of phenprocoumon at once can lead to brain edema during the first 24 hours, followed by reduced blood clotting and (possibly severe) bleeding, including blood in the stool or urine. Bleeding into the brain can lead to disorientation or unconsciousness, calling for immediate medical intervention. [4] Overdosing for an extended time period is toxic for the liver parenchyma, the kidneys' glomeruli, and blood vessels. [1]

Interactions

Due to its narrow therapeutic index, the fact that it can only be eliminated from the body after inactivation by the liver enzymes CYP2C9 and CYP3A4, and its high plasma protein binding (see below), phenprocoumon has significant interactions with a large number of other drugs and with some kinds of food. Some examples are: [4] [6]

Pharmacology

Mechanism of action

Phenprocoumon is an inhibitor of the enzyme vitamin K epoxide reductase (VKOR). Vitamin K is needed to activate the coagulation factors II, VII, IX and X [9] and the anticoagulation factors protein C and protein S, [10] in which process it turns into vitamin K 2,3-epoxide. This is then recycled to vitamin K in a process involving VKOR. Inhibiting this enzyme effectively creates a vitamin K deficiency, blocking activation of the coagulation factors. After 36 to 72 hours, the available activated factors have been depleted (used up) by the coagulation system, and the anticoagulation takes effect. [1]

Pharmacokinetics

Metabolism of S(-)-phenprocoumon: known positions of hydroxylation by liver enzymes Phenprocoumon hydroxylation.svg
Metabolism of S(−)‑phenprocoumon: known positions of hydroxylation by liver enzymes

The drug is taken by mouth and quickly and completely absorbed from the gut. When in the bloodstream, 99% are bound to plasma proteins (mainly albumin). [1] [4] The substance is metabolized by the liver enzymes CYP2C9 and CYP3A4 to various hydroxyl derivatives, [12] and subsequently conjugated to glucuronic acid to a small extent. The glucuronide metabolites partly undergo enterohepatic circulation. All metabolites, as well as the parent substance, are excreted predominantly via the kidney and urine, only 15% in unchanged form. [1] [4] The terminal half-life is 150 hours (6 to 7 days) on average with large differences between people. [9]

The long half-life means that drug concentrations take about four weeks to reach a steady state after therapy is started; the anticoagulation lasts at least 7 to 10 days after therapy is stopped; and dose changes need several days to take effect. [3] [4]

The drug passes the placenta and also into breast milk. [8]

Pharmacogenomics

Genetic polymorphisms of CYP2C9 can change the metabolization speed of phenprocoumon. [4] Polymorphisms of VKORC1 , the gene coding for subunit 1 of vitamin K epoxide reductase, can influence the dose needed to achieve the desired INR. [13]

Chemistry

R(+)-phenprocoumon (top) and S(-)-phenprocoumon (bottom). The drug is a 1:1 mixture of both. (+-)-Phenprocoumon Enantiomers V.1.svg
R(+)-phenprocoumon (top) and S(−)-phenprocoumon (bottom). The drug is a 1:1 mixture of both.

Phenprocoumon, a 4-hydroxycoumarin structurally similar to warfarin, is a white to off-white crystalline powder with a characteristic smell. It is practically insoluble in water, but soluble in chloroform, ethanol, methanol, and aqueous alkali hydroxide solutions. It is an acid (pKa = 4.2) and melts between 177 and 181 °C (351 and 358 °F). [1] The substance is used as a racemic mixture; the S(−)-form is significantly more potent as an anticoagulant. [9]

Comparison with other anticoagulants

Warfarin

Warfarin and phenprocoumon have the same mechanism of action, similar uses, side effects and interactions, and are also chemically similar. For both drugs, the INR needs to be carefully monitored. Both are racemates, and the S(−)-enantiomers are significantly more potent than the respective R(+)-enantiomers. There are however pharmacokinetic differences: Warfarin is predominantly metabolized via the enzyme CYP2C9, while for phenprocoumon CYP3A4 plays the more important role. The average half-life of warfarin is 40 hours, that of phenprocoumon 150 hours, almost four times as long. Both drugs show large differences in half-life between individuals. [4] [9] [14]

Direct factor Xa inhibitors

Direct factor Xa inhibitors (xabans) such as rivaroxaban and apixaban are a newer class of blood thinners. They have been in therapeutic use since about 2010, while phenprocoumon was developed in the 1950s. [4] Xabans have a fast onset and cessation of action, wide therapeutic index, and relatively low potential for interactions with other drugs and food. There are standard dosing schemes, and INR monitoring is neither necessary nor meaningful. [15] [16]

On the other hand, forgetting one phenprocoumon dose does not change the INR much because of its long half-life, while forgetting a xaban dose means the patient is not reliably anticoagulated for about a day. INR monitoring under phenprocoumon makes it easier to detect problems such as medication errors or interactions with drugs or food. Also, there have been concerns that patients' therapy adherence may not be as reliable if they are not regularly monitored by their physicians. Finally, xabans are significantly more expensive than phenprocoumon and warfarin. [3] [15] [16]

Low-molecular-weight heparins

LMWHs also have a fast onset of action, wide therapeutic index, standard dosing schemes, and a very low potential for interactions. They can, however, only be given by injection or infusion, rendering them impractical for long-term use at home. [17]

History

The substance was developed in 1953 by Alfred Winterstein  [ de ] and his team, and patented in 1955 by Hoffmann-La Roche. [18]

Related Research Articles

<span class="mw-page-title-main">Anticoagulant</span> Class of drugs

An anticoagulant, commonly known as a blood thinner, is a chemical substance that prevents or reduces coagulation of blood, prolonging the clotting time. Some of them occur naturally in blood-eating animals such as leeches and mosquitoes, where they help keep the bite area unclotted long enough for the animal to obtain some blood.

<span class="mw-page-title-main">Coagulation</span> Process of formation of blood clots

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

<span class="mw-page-title-main">Warfarin</span> Medication

Warfarin is an anticoagulant used as a medication under several brand names including Coumadin. While the drug is described as a "blood thinner", it does not reduce viscosity but rather inhibits coagulation. Accordingly, it is commonly used to prevent blood clots in the circulatory system such as deep vein thrombosis and pulmonary embolism, and to protect against stroke in people who have atrial fibrillation, valvular heart disease, or artificial heart valves. Less commonly, it is used following ST-segment elevation myocardial infarction and orthopedic surgery. It is usually taken by mouth, but may also be administered intravenously.

Low-molecular-weight heparin (LMWH) is a class of anticoagulant medications. They are used in the prevention of blood clots and treatment of venous thromboembolism and in the treatment of myocardial infarction.

<span class="mw-page-title-main">Prothrombin time</span> Assay for evaluating the extrinsic pathway & common pathway of coagulation

The prothrombin time (PT) – along with its derived measures of prothrombin ratio (PR) and international normalized ratio (INR) – is an assay for evaluating the extrinsic pathway and common pathway of coagulation. This blood test is also called protime INR and PT/INR. They are used to determine the clotting tendency of blood, in such things as the measure of warfarin dosage, liver damage, and vitamin K status. PT measures the following coagulation factors: I (fibrinogen), II (prothrombin), V (proaccelerin), VII (proconvertin), and X.

<span class="mw-page-title-main">Factor X</span> Mammalian protein found in Homo sapiens

Factor X, also known by the eponym Stuart–Prower factor, is an enzyme of the coagulation cascade. It is a serine endopeptidase. Factor X is synthesized in the liver and requires vitamin K for its synthesis.

<span class="mw-page-title-main">Argatroban</span> Pharmaceutical drug

Argatroban is an anticoagulant that is a small molecule direct thrombin inhibitor. In 2000, argatroban was licensed by the Food and Drug Administration (FDA) for prophylaxis or treatment of thrombosis in patients with heparin-induced thrombocytopenia (HIT). In 2002, it was approved for use during percutaneous coronary interventions in patients who have HIT or are at risk for developing it. In 2012, it was approved by the MHRA in the UK for anticoagulation in patients with heparin-induced thrombocytopenia Type II (HIT) who require parenteral antithrombotic therapy.

<span class="mw-page-title-main">Fresh frozen plasma</span> Liquid portion of whole blood

Fresh frozen plasma (FFP) is a blood product made from the liquid portion of whole blood. It is used to treat conditions in which there are low blood clotting factors or low levels of other blood proteins. It may also be used as the replacement fluid in plasma exchange. Using ABO compatible plasma, while not required, may be recommended. Use as a volume expander is not recommended. It is administered by slow injection into a vein.

<span class="mw-page-title-main">Hypoprothrombinemia</span> Medical condition

Hypoprothrombinemia is a rare blood disorder in which a deficiency in immunoreactive prothrombin, produced in the liver, results in an impaired blood clotting reaction, leading to an increased physiological risk for spontaneous bleeding. This condition can be observed in the gastrointestinal system, cranial vault, and superficial integumentary system, affecting both the male and female population. Prothrombin is a critical protein that is involved in the process of hemostasis, as well as illustrating procoagulant activities. This condition is characterized as an autosomal recessive inheritance congenital coagulation disorder affecting 1 per 2,000,000 of the population, worldwide, but is also attributed as acquired.

<span class="mw-page-title-main">Rivaroxaban</span> Anticoagulant drug

Rivaroxaban, sold under the brand name Xarelto among others, is an anticoagulant medication used to treat and prevent blood clots. Specifically it is used to treat deep vein thrombosis and pulmonary emboli and prevent blood clots in atrial fibrillation and following hip or knee surgery. It is taken by mouth.

<span class="mw-page-title-main">Warfarin necrosis</span> Medical condition

Warfarin-induced skin necrosis is a condition in which skin and subcutaneous tissue necrosis occurs due to acquired protein C deficiency following treatment with anti-vitamin K anticoagulants.

<span class="mw-page-title-main">Fetal warfarin syndrome</span> Congenital disorder caused by maternal warfarin administration

Fetal warfarin syndrome is a disorder of the embryo which occurs in a child whose mother took the medication warfarin during pregnancy. Resulting abnormalities include low birth weight, slower growth, intellectual disability, deafness, small head size, and malformed bones, cartilage, and joints.

Prothrombin complex concentrate (PCC), also known as factor IX complex, sold under the brand name Kcentra among others, is a combination medication made up of blood clotting factors II, IX, and X. Some versions also contain factor VII. It is used to treat and prevent bleeding in hemophilia B if pure factor IX is not available. It may also be used for reversal of warfarin therapy. It is given by slow injection into a vein.

Hypercoagulability in pregnancy is the propensity of pregnant women to develop thrombosis. Pregnancy itself is a factor of hypercoagulability, as a physiologically adaptive mechanism to prevent post partum bleeding. However, when combined with an additional underlying hypercoagulable states, the risk of thrombosis or embolism may become substantial.

<span class="mw-page-title-main">VKORC1</span> Protein-coding gene in the species Homo sapiens

The human gene VKORC1 encodes for the enzyme, Vitamin K epOxide Reductase Complex (VKORC) subunit 1. This enzymatic protein complex is responsible for reducing vitamin K 2,3-epoxide to its active form, which is important for effective clotting (coagulation). In humans, mutations in this gene can be associated with deficiencies in vitamin-K-dependent clotting factors.

Direct factor Xa inhibitors (xabans) are anticoagulants, used to both treat and prevent blood clots in veins, and prevent stroke and embolism in people with atrial fibrillation (AF).

<span class="mw-page-title-main">Vitamin K reaction</span> Medical condition

Vitamin K reactions are adverse side effects that may occur after injection with vitamin K. The liver utilizes vitamin K to produce coagulation factors that help the body form blood clots which prevent excessive bleeding. Vitamin K injections are administered to newborns as a preventative measure to reduce the risk of hemorrhagic disease of the newborn (HDN).

<span class="mw-page-title-main">Edoxaban</span> Anticoagulant drug

Edoxaban, sold under the brand name Lixiana among others, is an anticoagulant medication and a direct factor Xa inhibitor. It is taken by mouth.

Direct thrombin inhibitors (DTIs) are a class of anticoagulant drugs that can be used to prevent and treat embolisms and blood clots caused by various diseases. They inhibit thrombin, a serine protease which affects the coagulation cascade in many ways. DTIs have undergone rapid development since the 90's. With technological advances in genetic engineering the production of recombinant hirudin was made possible which opened the door to this new group of drugs. Before the use of DTIs the therapy and prophylaxis for anticoagulation had stayed the same for over 50 years with the use of heparin derivatives and warfarin which have some well known disadvantages. DTIs are still under development, but the research focus has shifted towards factor Xa inhibitors, or even dual thrombin and fXa inhibitors that have a broader mechanism of action by both inhibiting factor IIa (thrombin) and Xa. A recent review of patents and literature on thrombin inhibitors has demonstrated that the development of allosteric and multi-mechanism inhibitors might lead the way to a safer anticoagulant.

<span class="mw-page-title-main">Tecarfarin</span> Chemical compound

Tecarfarin is a vitamin K antagonist under development for use as an anticoagulant. A Phase II/III clinical trial in 607 people, comparing it to the established vitamin K antagonist warfarin, found no difference in quality of anticoagulation or side effects between the two drugs in the overall population. Among patients taking CYP2C9 interacting drugs however, the tecarfarin patients’ TTR was 72.2% (n=92) vs 69.9% (n=87) for warfarin patients (pint=0.16); among patients who had both a CYP2C9 variant allele and taking a CYP2C9 interacting drug, TTR was 76.5% and 69.5% for the tecarfarin (n=24) and warfarin (n=31) groups, respectively (pint=0.24). This study included in 84 (14%) patients with a mechanical heart valve as an indication for anticoagulation therapy. No thrombotic or embolic events were observed in the tecarfarin treated subjects. In contrast to warfarin, tecarfarin is not affected by the cytochrome P450 inhibiting drug fluconazole, indicating a lower potential for interactions with other drugs.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Dinnendahl V, Fricke U, eds. (2000). Arzneistoff-Profile (in German). Vol. 8 (16 ed.). Eschborn, Germany: Govi Pharmazeutischer Verlag. Doxycyclin. ISBN   978-3-7741-9846-3.
  2. 1 2 Haustein KO (1999). "Pharmacokinetic and pharmacodynamic properties of oral anticoagulants, especially phenprocoumon". Seminars in Thrombosis and Hemostasis. 25 (1): 5–11. doi:10.1055/s-2007-996417. PMID   10327214.
  3. 1 2 3 4 5 Geisslinger G, Menzel S (15 September 2017). Wenn Arzneimittel wechselwirken (in German). Stuttgart: Wissenschaftliche Verlagsgesellschaft. pp. 15–18. ISBN   978-3-8047-3747-1.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Haberfeld H, ed. (2021). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Marcoumar-Tabletten. Text available here.
  5. Phenprocoumon International Drug Names . Accessed 2021-08-25.
  6. 1 2 3 "mediQ (paywalled)" (in German). Psychiatrische Dienste Aargau AG. Retrieved 2021-08-24.
  7. Nöldeke S, Jenal G, Hupp T (2001). "Coumarin-induced necrosis: Pathophysiology, clinical picture, and therapy". Gefässchirurgie. 6 (3): 129–135. doi:10.1007/s007720100143. S2CID   44842896.
  8. 1 2 Karow T, Lang-Roth R (2021). Pharmakologie und Toxikologie (in German) (29 ed.). pp. 161–163. ISBN   9783982122311.
  9. 1 2 3 4 Mutschler E, Schäfer-Korting M (2013). Arzneimittelwirkungen (in German) (10 ed.). Stuttgart: Wissenschaftliche Verlagsgesellschaft. pp. 481–2. ISBN   978-3-8047-1763-3.
  10. Castoldi E, Hackeng TM (September 2008). "Regulation of coagulation by protein S". Curr. Opin. Hematol. 15 (5): 529–36. doi:10.1097/MOH.0b013e328309ec97. PMID   18695379. S2CID   11522770.
  11. Kammerer B, Kahlich R, Ufer M, Schenkel A, Laufer S, Gleiter CH (November 2005). "Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes". Analytical and Bioanalytical Chemistry. 383 (6): 909–17. doi:10.1007/s00216-005-0113-7. PMID   16237546. S2CID   13730692.
  12. Kammerer B, Kahlich R, Ufer M, Schenkel A, Laufer S, Gleiter CH (November 2005). "Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes". Analytical and Bioanalytical Chemistry. 383 (6): 909–17. doi:10.1007/s00216-005-0113-7. PMID   16237546. S2CID   13730692.
  13. "Clinical Annotation for rs9923231 (VKORC1); phenprocoumon (level 1A Dosage)". PharmGKB. Retrieved 2021-08-25.
  14. Warfarin Monograph . Accessed 2021-08-24.
  15. 1 2 Scaglione F (February 2013). "New oral anticoagulants: comparative pharmacology with vitamin K antagonists". Clinical Pharmacokinetics. 52 (2): 69–82. doi:10.1007/s40262-012-0030-9. PMID   23292752. S2CID   27830280.
  16. 1 2 Bauer KA (2013). "Pros and cons of new oral anticoagulants". Hematology. American Society of Hematology. Education Program. 2013: 464–70. doi: 10.1182/asheducation-2013.1.464 . PMID   24319220.
  17. Haberfeld H, ed. (2021). Austria-Codex (in German). Vienna: Österreichischer Apothekerverlag. Lovenox 4.000 IE (40 mg)/0,4 ml Injektionslösung in einer Fertigspritze.
  18. Entry on Phenprocoumon . at: Römpp Online . Georg Thieme Verlag, retrieved 2019-07-23.