Scopoletin

Last updated
Scopoletin
Scopoletin.svg
Names
Preferred IUPAC name
7-Hydroxy-6-methoxy-2H-1-benzopyran-2-one
Other names
7-Hydroxy-6-methoxy-2H-chromen-2-one
7-Hydroxy-6-methoxychromen-2-one
Gelseminic acid
Chrysatropic acid
Scopoletine
6-Methylesculetin
Murrayetin
Scopoletol
Escopoletin
Methylesculetin
6-O-Methylesculetin
Esculetin-6-methyl ether
7-Hydroxy-5-methoxycoumarin
6-Methoxyumbelliferone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.001.975 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C10H8O4/c1-13-9-4-6-2-3-10(12)14-8(6)5-7(9)11/h2-5,11H,1H3 X mark.svgN
    Key: RODXRVNMMDRFIK-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C10H8O4/c1-13-9-4-6-2-3-10(12)14-8(6)5-7(9)11/h2-5,11H,1H3
    Key: RODXRVNMMDRFIK-UHFFFAOYAG
  • COC1=C(C=C2C(=C1)C=CC(=O)O2)O
Properties
C10H8O4
Molar mass 192.16 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Scopoletin is a coumarin found in the root of plants in the genus Scopolia such as Scopolia carniolica and Scopolia japonica , in chicory, in Artemisia scoparia , in the roots and leaves of stinging nettle ( Urtica dioica ), in the passion flower, in Brunfelsia , in Viburnum prunifolium , in Solanum nigrum , [1] in Datura metel , [2] in Mallotus resinosus , [3] or and in Kleinhovia hospita . It can also be found in fenugreek, [4] vinegar, [5] [4] some whiskies or in dandelion coffee. A similar coumarin is scoparone. Scopoletin is highly fluorescent when dissolved in DMSO or water and is regularly used as a fluorimetric assay for the detection of hydrogen peroxide in conjunction with horseradish peroxidase. When oxidized, its fluorescence is strongly suppressed.

Contents

Chemistry

Biosynthesis

Like most phenylpropanoids, the biosynthetic precursor to scopoletin acid is 4-coumaroyl-CoA. [6] Scopoletin is derived from 1,2-benzopyrones [7] which is the core structure of coumarins formed through hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. [8] And CYP98A (C3’H) are enzymes belonging to the cytochrome P450 family that catalyze the meta-hydroxylation of p-coumarate derivatives, an important step in the phenylpropanoid pathway. [9] For scopoletin, most of biosynthetic investigations are based on Arabidopsis thaliana.

Biosynthetic pathway of Scopoletin Wikipedia pathway copy.png
Biosynthetic pathway of Scopoletin

Derivatives/Related Compounds

Scopolin is a glucoside of scopoletin formed by the action of the enzyme scopoletin glucosyltransferase.

Uses

Traditional Medicine

It was usually used for rheumatic arthritis therapy in Traditional Chinese Medicine.

Related Research Articles

<i>Datura</i> Genus of poisonous, potentially psychoactive plants

Datura is a genus of nine species of highly poisonous, vespertine-flowering plants belonging to the nightshade family (Solanaceae). They are commonly known as thornapples or jimsonweeds, but are also known as devil's trumpets. Other English common names include moonflower, devil's weed, and hell's bells. All species of Datura are extremely poisonous and potentially psychoactive, especially their seeds and flowers, which can cause respiratory depression, arrhythmias, fever, delirium, hallucinations, anticholinergic syndrome, psychosis, and death if taken internally.

<span class="mw-page-title-main">Fenugreek</span> Species of flowering plant

Fenugreek is an annual plant in the family Fabaceae, with leaves consisting of three small obovate to oblong leaflets. It is cultivated worldwide as a semiarid crop. Its seeds and leaves are common ingredients in dishes from the Indian subcontinent, and have been used as a culinary ingredient since ancient times. Its use as a food ingredient in small quantities is safe.

<span class="mw-page-title-main">Solanine</span> Glycoalkaloid poison found in the nightshade family of plants

Solanine is a glycoalkaloid poison found in species of the nightshade family within the genus Solanum, such as the potato, the tomato, and the eggplant. It can occur naturally in any part of the plant, including the leaves, fruit, and tubers. Solanine has pesticidal properties, and it is one of the plant's natural defenses. Solanine was first isolated in 1820 from the berries of the European black nightshade, after which it was named. It belongs to the chemical family of saponins.

<span class="mw-page-title-main">Phytochemistry</span> Study of phytochemicals, which are chemicals derived from plants

Phytochemistry is the study of phytochemicals, which are chemicals derived from plants. Phytochemists strive to describe the structures of the large number of secondary metabolites found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds. Plants synthesize phytochemicals for many reasons, including to protect themselves against insect attacks and plant diseases. The compounds found in plants are of many kinds, but most can be grouped into four major biosynthetic classes: alkaloids, phenylpropanoids, polyketides, and terpenoids.

<span class="mw-page-title-main">Methoxsalen</span> Chemical compound

Methoxsalen, sold under the brand name Oxsoralen among others, is a medication used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to ultraviolet (UVA) light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. Levels of individual patient PUVA exposure were originally determined using the Fitzpatrick scale. The scale was developed after patients demonstrated symptoms of phototoxicity after oral ingestion of methoxsalen followed by PUVA therapy. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically.

<span class="mw-page-title-main">Hesperidin</span> Chemical compound

Hesperidin is a flavanone glycoside found in citrus fruits. Its aglycone is hesperetin. Its name is derived from the word "hesperidium", for fruit produced by citrus trees.

<span class="mw-page-title-main">Phenylpropanoid</span>

The phenylpropanoids are a diverse family of organic compounds that are synthesized by plants from the amino acids phenylalanine and tyrosine. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols, flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.

<span class="mw-page-title-main">Daidzein</span> Chemical compound

Daidzein is a naturally occurring compound found exclusively in soybeans and other legumes and structurally belongs to a class of compounds known as isoflavones. Daidzein and other isoflavones are produced in plants through the phenylpropanoid pathway of secondary metabolism and are used as signal carriers, and defense responses to pathogenic attacks. In humans, recent research has shown the viability of using daidzein in medicine for menopausal relief, osteoporosis, blood cholesterol, and lowering the risk of some hormone-related cancers, and heart disease. Despite the known health benefits, the use of both puerarin and daidzein is limited by their poor bioavailability and low water solubility.

<span class="mw-page-title-main">Cinnamoyl-CoA reductase</span>

Cinnamoyl-CoA reductase (EC 1.2.1.44), systematically named cinnamaldehyde:NADP+ oxidoreductase (CoA-cinnamoylating) but commonly referred to by the acronym CCR, is an enzyme that catalyzes the reduction of a substituted cinnamoyl-CoA to its corresponding cinnamaldehyde, utilizing NADPH and H+ and releasing free CoA and NADP+ in the process. Common biologically relevant cinnamoyl-CoA substrates for CCR include p-coumaroyl-CoA and feruloyl-CoA, which are converted into p-coumaraldehyde and coniferaldehyde, respectively, though most CCRs show activity toward a variety of other substituted cinnamoyl-CoA's as well. Catalyzing the first committed step in monolignol biosynthesis, this enzyme plays a critical role in lignin formation, a process important in plants both for structural development and defense response.

<span class="mw-page-title-main">Arogenate dehydratase</span> Enzyme

Arogenate dehydratase (ADT) (EC 4.2.1.91) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Solamargine</span> Chemical compound

Solamargine is a cytotoxic chemical compound that occurs in plants of the family Solanaceae, such as potatoes, tomatoes, and eggplants. It has been also isolated from Solanum nigrum fungal endophyte Aspergillus flavus. It is a glycoalkaloid derived from the steroidal alkaloid solasodine.

<span class="mw-page-title-main">Withanolide</span>

Withanolides are a group of at least 300 naturally occurring steroids built on an ergostane skeleton. They occur as secondary metabolites primarily in genera of the Nightshade family, for example in the tomatillo.

<i>Smilax glabra</i> Species of flowering plant

Smilax glabra, sarsaparilla, is a plant species in the genus Smilax. It is native to China, the Himalayas, and Indochina.

Sphinganine C4-monooxygenase (EC 1.14.13.169, sphingolipid C4-hydroxylase, SUR2 (gene), SBH1 (gene), SBH2 (gene)) is an enzyme with systematic name sphinganine,NADPH:oxygen oxidoreductase (C4-hydroxylating). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Fraxetin</span> Chemical compound

Fraxetin is an O-methylated coumarin. It can be found in Fraxinus rhynchophylla and seeds of Datura stramonium. Fraxin is a glucoside of fraxetin.

<span class="mw-page-title-main">2,4,5-Trimethoxypropiophenone</span> Chemical compound

2,4,5-Trimethoxypropiophenone is a natural phenylpropanoid and precursor in the synthesis of α-asarone.

Mallotus resinosus, the resinous kamala , is a species of 12m tall shrub, evergreen plant in the family Euphorbiaceae. It is native to India, Sri Lanka to New Guinea and Australia. The plant is known as "கருவாளிச்சீ / karuvalichchi" by Tamil people.

<span class="mw-page-title-main">Solanaceae</span> Family of flowering plants that includes tomatoes, potatoes and tobacco

The Solanaceae, or the nightshades, are a family of flowering plants that ranges from annual and perennial herbs to vines, lianas, epiphytes, shrubs, and trees, and includes a number of agricultural crops, medicinal plants, spices, weeds, and ornamentals. Many members of the family contain potent alkaloids, and some are highly toxic, but many—including tomatoes, potatoes, eggplant, bell and chili peppers—are used as food. The family belongs to the order Solanales, in the asterid group and class Magnoliopsida (dicotyledons). The Solanaceae consists of about 98 genera and some 2,700 species, with a great diversity of habitats, morphology and ecology.

Robert L. Last is a plant biochemical genomicist who studies metabolic processes that protect plants from the environment and produce products important for animal and human nutrition. His research has covered (1) production and breakdown of essential amino acids, (2) the synthesis and protective roles of Vitamin C and Vitamin E (tocopherols) as well as identification of mechanisms that protect photosystem II from damage, and (3) synthesis and biological functions of plant protective specialized metabolites. Four central questions are: (i) how are leaf and seed amino acids levels regulated, (ii.) what mechanisms protect and repair photosystem II from stress-induced damage, (iii.) how do plants produce protective metabolites in their glandular secreting trichomes (iv.) and what are the evolutionary mechanisms that contribute to the tremendous diversity of specialized metabolites that protect plants from insects and pathogens and are used as therapeutic agents.

<span class="mw-page-title-main">Daturaolone</span> Chemical compound

Daturaolone is a pentacyclic oleanane triterpenoid, also known as 3-oxo-6-β-hydroxy-β-amyrin, found in Datura species such as Datura stramonium and Datura innoxia.

References

  1. Zhao Y; Liu F; Lou HX (2010). "[Studies on the chemical constituents of Solanum nigrum]". Zhong Yao Cai (in Chinese). 33 (4): 555–556. PMID   20845784.
  2. Han XL, Wang H, Zhang ZH, Tan Y, Wang JH (August 2015). "[Study on Chemical Constituents in Seeds of Datura metel from Xinjiang]". Zhong Yao Cai = Zhongyaocai = Journal of Chinese Medicinal Materials (in Chinese). 38 (8): 1646–8. PMID   26983236.
  3. Ma J; Jones SH; Hecht SM (2004). "A coumarin from Mallotus resinosus that mediates DNA cleavage". J Nat Prod. 67 (9): 1614–1616. doi:10.1021/np040129c. PMID   15387675.
  4. 1 2 Ouzir, M; El Bairi, K; Amzazi, S (October 2016). "Toxicological properties of fenugreek (Trigonella foenum graecum)". Food and Chemical Toxicology. 96: 145–54. doi:10.1016/j.fct.2016.08.003. PMID   27498339.
  5. Analysis of polyphenolic compounds of different vinegar samples. Miguel Carrero Gálvez, Carmelo García Barroso and Juan Antonio Pérez-Bustamante, Zeitschrift für Lebensmitteluntersuhung und -Forschung A, Volume 199, Number 1, pages 29-31, doi : 10.1007/BF01192948
  6. Vogt, T. (2010). "Phenylpropanoid Biosynthesis". Molecular Plant. 3: 2–20. doi: 10.1093/mp/ssp106 . PMID   20035037.
  7. Beeching, John R.; Han, Yuanhuai; Gómez-Vásquez, Rocío; Day, Robert C.; Cooper, Richard M. (1998), "Wound and Defense Responses in Cassava as Related to Post-Harvest Physiological Deterioration", Phytochemical Signals and Plant—Microbe Interactions, Springer US, pp. 231–248, doi:10.1007/978-1-4615-5329-8_12, ISBN   9780306459177
  8. Kai, Kosuke; Mizutani, Masaharu; Kawamura, Naohiro; Yamamoto, Ryotaro; Tamai, Michiko; Yamaguchi, Hikaru; Sakata, Kanzo; Shimizu, Bun-ichi (September 2008). "Scopoletin is biosynthesized viaortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase inArabidopsis thaliana". The Plant Journal. 55 (6): 989–999. doi: 10.1111/j.1365-313x.2008.03568.x . ISSN   0960-7412. PMID   18547395.
  9. Schoch, Guillaume; Goepfert, Simon; Morant, Marc; Hehn, Alain; Meyer, Denise; Ullmann, Pascaline; Werck-Reichhart, Danièle (2001-06-27). "CYP98A3 fromArabidopsis thalianaIs a 3′-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway" (PDF). Journal of Biological Chemistry. 276 (39): 36566–36574. doi: 10.1074/jbc.m104047200 . ISSN   0021-9258. PMID   11429408. S2CID   11765327.