Darexaban

Last updated
Darexaban
Darexaban.svg
Names
Preferred IUPAC name
N-[2-Hydroxy-6-(4-methoxybenzamido)phenyl]-4-(4-methyl-1,4-diazepan-1-yl)benzamide
Other names
YM150
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C27H30N4O4/c1-30-15-4-16-31(18-17-30)21-11-7-19(8-12-21)27(34)29-25-23(5-3-6-24(25)32)28-26(33)20-9-13-22(35-2)14-10-20/h3,5-14,32H,4,15-18H2,1-2H3,(H,28,33)(H,29,34)
    Key: IJNIQYINMSGIPS-UHFFFAOYSA-N
  • InChI=1/C27H30N4O4/c1-30-15-4-16-31(18-17-30)21-11-7-19(8-12-21)27(34)29-25-23(5-3-6-24(25)32)28-26(33)20-9-13-22(35-2)14-10-20/h3,5-14,32H,4,15-18H2,1-2H3,(H,28,33)(H,29,34)
    Key: IJNIQYINMSGIPS-UHFFFAOYAJ
  • O=C(c1ccc(OC)cc1)Nc2cccc(O)c2NC(=O)c4ccc(N3CCCN(C)CC3)cc4
Properties
C27H30N4O4
Molar mass 474.561 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Darexaban (YM150) is a direct inhibitor of factor Xa created by Astellas Pharma. [1] It is an experimental drug that acts as an anticoagulant and antithrombotic to prevent venous thromboembolism after a major orthopaedic surgery, stroke in patients with atrial fibrillation [2] and possibly ischemic events in acute coronary syndrome. [3] It is used in form of the maleate. The development of darexaban was discontinued in September 2011.

Contents

Clinical uses

Atrial fibrillation

Atrial fibrillation is an abnormal heart rhythm that causes a reduction in the cardiac output and blood flow to the brain. It also promotes the formation of blood clots in the atrial chambers of the heart. [4] Atrial fibrillation is associated with an increased risk of embolic stroke due to the increased risk of blood clot development. [5] Oral anticoagulant drugs such as Darexaban decrease the incidence and severity of stroke in patients with atrial fibrillation by preventing the formation of blood clots. [6]

Contraindictions

The RUBY-1 phase II trial results show that oral administration of darexaban in combination with the standard dual antiplatelet therapy used for acute coronary syndrome (ACS) patients caused a two- to four-fold increase in bleeding rates and no effect on ACS. [7] Though there were no cases of fatal bleeding or intracranial haemorrhage, the results of this study questions the concept of adding an oral anticoagulant to standard of care dual antiplatelet therapy in order to prevent recurrent ischemic events after ACS. The development of darexaban was discontinued in September 2011.

Pharmacology

Mechanism of action

Factor Xa (FXa) is an essential blood coagulation factor [2] that is responsible for the initiation of the coagulation cascade. FXa cleaves prothrombin to its active form thrombin, which then acts to convert soluble fibrinogen to insoluble fibrin and to activate platelets. Stabilization of the platelet aggregation by fibrin mesh ultimately leads to clot formation. [4]

Darexaban and darexaban glucuronide selectively and competitively inhibit FXa, suppressing prothrombin activity at the sites of blood clot (thrombus) formation. This leads to a decrease in blood clot formation in a dose dependent manner. [2] Reducing blood clot formation will decrease blood flow blockages, thus possibly lowering the risk of myocardial infarction, unstable angina, venous thrombosis, and ischemic stroke. [8]

Pharmacokinetics

Darexaban is rapidly absorbed and extensively metabolized in the liver to its active metabolite, darexaban glucuronide (YM-222714) during first pass metabolism via glucuronidation. [9] The metabolism of darexaban also occurs in the small intestine but to a much lesser extent. [2] Glucuronidation of darexaban occurs quickly, thus the half life of darexaban itself is short. However, the resultant darexaban glucuronide metabolite has a long half life of approximately 14–18 hours, reaching its maximum levels in the blood 1-1.5 hour post dose. [2] As a result, darexaban glucuronide is the main determinant of the antithrombotic effects. [3] Darexaban shows minimal interaction with food and is excreted through the kidneys (urine) and feces. [7]

Related Research Articles

<span class="mw-page-title-main">Anticoagulant</span> Class of drugs

Anticoagulants, commonly known as blood thinners, are chemical substances that prevent or reduce coagulation of blood, prolonging the clotting time. Some of them occur naturally in blood-eating animals such as leeches and mosquitoes, where they help keep the bite area unclotted long enough for the animal to obtain some blood. As a class of medications, anticoagulants are used in therapy for thrombotic disorders. Oral anticoagulants (OACs) are taken by many people in pill or tablet form, and various intravenous anticoagulant dosage forms are used in hospitals. Some anticoagulants are used in medical equipment, such as sample tubes, blood transfusion bags, heart–lung machines, and dialysis equipment. One of the first anticoagulants, warfarin, was initially approved as a rodenticide.

<span class="mw-page-title-main">Thrombosis</span> Medical condition caused by blood clots

Thrombosis is the formation of a blood clot inside a blood vessel, obstructing the flow of blood through the circulatory system. When a blood vessel is injured, the body uses platelets (thrombocytes) and fibrin to form a blood clot to prevent blood loss. Even when a blood vessel is not injured, blood clots may form in the body under certain conditions. A clot, or a piece of the clot, that breaks free and begins to travel around the body is known as an embolus.

<span class="mw-page-title-main">Thrombus</span> Blood clot

A thrombus, colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of cross-linked fibrin protein. The substance making up a thrombus is sometimes called cruor. A thrombus is a healthy response to injury intended to stop and prevent further bleeding, but can be harmful in thrombosis, when a clot obstructs blood flow through healthy blood vessels in the circulatory system.

<span class="mw-page-title-main">Venous thrombosis</span> Blood clot (thrombus) that forms within a vein

Venous thrombosis is the blockage of a vein caused by a thrombus. A common form of venous thrombosis is deep vein thrombosis (DVT), when a blood clot forms in the deep veins. If a thrombus breaks off (embolizes) and flows to the lungs to lodge there, it becomes a pulmonary embolism (PE), a blood clot in the lungs. The conditions of DVT only, DVT with PE, and PE only, are all captured by the term venous thromboembolism (VTE).

<span class="mw-page-title-main">Ischemia</span> Restriction in blood supply to tissues

Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism. Ischemia is generally caused by problems with blood vessels, with resultant damage to or dysfunction of tissue i.e. hypoxia and microvascular dysfunction. It also implies local hypoxia in a part of a body resulting from constriction. Ischemia causes not only insufficiency of oxygen, but also reduced availability of nutrients and inadequate removal of metabolic wastes. Ischemia can be partial or total blockage. The inadequate delivery of oxygenated blood to the organs must be resolved either by treating the cause of the inadequate delivery or reducing the oxygen demand of the system that needs it. For example, patients with myocardial ischemia have a decreased blood flow to the heart and are prescribed with medications that reduce chronotrophy and ionotrophy to meet the new level of blood delivery supplied by the stenosed vasculature so that it is adequate.

Low-molecular-weight heparin (LMWH) is a class of anticoagulant medications. They are used in the prevention of blood clots and treatment of venous thromboembolism and in the treatment of myocardial infarction.

<span class="mw-page-title-main">Ximelagatran</span> Anticoagulant

Ximelagatran is an anticoagulant that has been investigated extensively as a replacement for warfarin that would overcome the problematic dietary, drug interaction, and monitoring issues associated with warfarin therapy. In 2006, its manufacturer AstraZeneca announced that it would withdraw pending applications for marketing approval after reports of hepatotoxicity during trials, and discontinue its distribution in countries where the drug had been approved.

<span class="mw-page-title-main">Thrombophilia</span> Abnormality of blood coagulation

Thrombophilia is an abnormality of blood coagulation that increases the risk of thrombosis. Such abnormalities can be identified in 50% of people who have an episode of thrombosis that was not provoked by other causes. A significant proportion of the population has a detectable thrombophilic abnormality, but most of these develop thrombosis only in the presence of an additional risk factor.

<span class="mw-page-title-main">Rivaroxaban</span> Anticoagulant drug

Rivaroxaban, sold under the brand name Xarelto among others, is an anticoagulant medication used to treat and prevent blood clots. Specifically it is used to treat deep vein thrombosis and pulmonary emboli and prevent blood clots in atrial fibrillation and following hip or knee surgery. It is taken by mouth.

<span class="mw-page-title-main">Dabigatran</span> Anticoagulant medication

Dabigatran, sold under the brand name Pradaxa among others, is an anticoagulant used to treat and prevent blood clots and to prevent stroke in people with atrial fibrillation. Specifically it is used to prevent blood clots following hip or knee replacement and in those with a history of prior clots. It is used as an alternative to warfarin and does not require monitoring by blood tests. In a meta analysis of 7 different studies, there was no benefit of dabigatran over warfarin in preventing ischemic stroke; however, dabigatran were associated with a lower hazard for intracranial bleeding compared with warfarin, but also had a higher risk of gastrointestinal bleeding relative to warfarin. It is taken by mouth.

Direct thrombin inhibitors (DTIs) are a class of medication that act as anticoagulants by directly inhibiting the enzyme thrombin. Some are in clinical use, while others are undergoing clinical development. Several members of the class are expected to replace heparin and warfarin in various clinical scenarios.

Hypercoagulability in pregnancy is the propensity of pregnant women to develop thrombosis. Pregnancy itself is a factor of hypercoagulability, as a physiologically adaptive mechanism to prevent post partum bleeding. However, when combined with an additional underlying hypercoagulable states, the risk of thrombosis or embolism may become substantial.

Direct factor Xa inhibitors (xabans) are anticoagulants, used to both treat and prevent blood clots in veins, and prevent stroke and embolism in people with atrial fibrillation (AF).

<span class="mw-page-title-main">Vitamin K antagonist</span>

Vitamin K antagonists (VKA) are a group of substances that reduce blood clotting by reducing the action of vitamin K. The term "vitamin K antagonist" is technically a misnomer, as the drugs do not directly antagonize the action of vitamin K in the pharmacological sense, but rather the recycling of vitamin K. Vitamin K antagonists (VKAs) have been the mainstay of anticoagulation therapy for more than 50 years.

The management of atrial fibrillation (AF) is focused on preventing temporary circulatory instability, stroke and other ischemic events. Control of heart rate and rhythm are principally used to achieve the former, while anticoagulation may be employed to decrease the risk of stroke. Within the context of stroke, the discipline may be referred to as stroke prevention in atrial fibrillation (SPAF). In emergencies, when circulatory collapse is imminent due to uncontrolled rapid heart rate, immediate cardioversion may be indicated.

<span class="mw-page-title-main">Edoxaban</span> Anticoagulant drug

Edoxaban, sold under the brand name Lixiana among others, is an anticoagulant medication and a direct factor Xa inhibitor. It is taken by mouth.

<span class="mw-page-title-main">Betrixaban</span> Chemical compound

Betrixaban is an oral anticoagulant drug which acts as a direct factor Xa inhibitor. Betrixaban is FDA approved for venous thrombosis prevention in adults hospitalized for an acute illness who are at risk for thromboembolic complications. Compared to other directly acting oral anticoagulants betrixaban has relatively low renal excretion and is not metabolized by CYP3A4.

<span class="mw-page-title-main">Apixaban</span> Anticoagulant medication

Apixaban, sold under the brand name Eliquis, is an anticoagulant medication used to treat and prevent blood clots and to prevent stroke in people with nonvalvular atrial fibrillation through directly inhibiting factor Xa. Specifically, it is used to prevent blood clots following hip or knee replacement and in those with a history of prior clots. It is used as an alternative to warfarin and does not require monitoring by blood tests or dietary restrictions. It is taken by mouth.

Direct thrombin inhibitors (DTIs) are a class of anticoagulant drugs that can be used to prevent and treat embolisms and blood clots caused by various diseases. They inhibit thrombin, a serine protease which affects the coagulation cascade in many ways. DTIs have undergone rapid development since the 90's. With technological advances in genetic engineering the production of recombinant hirudin was made possible which opened the door to this new group of drugs. Before the use of DTIs the therapy and prophylaxis for anticoagulation had stayed the same for over 50 years with the use of heparin derivatives and warfarin which have some well known disadvantages. DTIs are still under development, but the research focus has shifted towards factor Xa inhibitors, or even dual thrombin and fXa inhibitors that have a broader mechanism of action by both inhibiting factor IIa (thrombin) and Xa. A recent review of patents and literature on thrombin inhibitors has demonstrated that the development of allosteric and multi-mechanism inhibitors might lead the way to a safer anticoagulant.

<span class="mw-page-title-main">Thrombosis prevention</span> Medical treatment

Thrombosis prevention or thromboprophylaxis is medical treatment to prevent the development of thrombosis in those considered at risk for developing thrombosis. Some people are at a higher risk for the formation of blood clots than others, such as those with cancer undergoing a surgical procedure. Prevention measures or interventions are usually begun after surgery as the associated immobility will increase a person's risk.

References

  1. Eriksson, B. I.; Turpie, A. G.; Lassen, M. R.; Prins, M. H.; Agnelli, G.; Kälebo, P.; Gaillard, M. L.; Meems, L.; ONYX study group (2007). "A dose escalation study of YM150, an oral direct factor Xa inhibitor, in the prevention of venous thromboembolism in elective primary hip replacement surgery". Journal of Thrombosis and Haemostasis. 5 (8): 1660–5. doi: 10.1111/j.1538-7836.2007.02644.x . PMID   17663737. S2CID   2343858.
  2. 1 2 3 4 5 Iwatsuki, Y.; Sato, T.; Moritani, Y.; Shigenaga, T.; Suzuki, M.; Kawasaki, T.; Funatsu, T.; Kaku, S. (2011). "Biochemical and pharmacological profile of darexaban, an oral direct factor Xa inhibitor". European Journal of Pharmacology. 673 (1–3): 49–55. doi:10.1016/j.ejphar.2011.10.009. PMID   22040919.
  3. 1 2 Shiraga, T.; Yajima, K.; Suzuki, K.; Suzuki, K.; Hashimoto, T.; Iwatsubo, T.; Miyashita, A.; Usui, T. (2012). "Identification of UDP-glucuronosyltransferases responsible for the glucuronidation of darexaban, an oral factor Xa inhibitor, in human liver and intestine". Drug Metabolism and Disposition: The Biological Fate of Chemicals. 40 (2): 276–82. doi:10.1124/dmd.111.042614. PMID   22031623. S2CID   1643706.
  4. 1 2 Katsung B.; Masters S.; Trevor A. (2009). Basic and Clinical Pharmacology (11th ed.). McGraw-Hill Medical. ISBN   978-0071604055.
  5. Yuan, Z.; Bowlin, S.; Einstadter, D.; Cebul, R. D.; Conners Jr, A. R.; Rimm, A. A. (1998). "Atrial fibrillation as a risk factor for stroke: A retrospective cohort study of hospitalized Medicare beneficiaries". American Journal of Public Health. 88 (3): 395–400. doi:10.2105/ajph.88.3.395. PMC   1508341 . PMID   9518970.
  6. Hylek, E. M.; Go, A. S.; Chang, Y.; Jensvold, N. G.; Henault, L. E.; Selby, J. V.; Singer, D. E. (2003). "Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation". The New England Journal of Medicine. 349 (11): 1019–26. doi: 10.1056/NEJMoa022913 . PMID   12968085.
  7. 1 2 Steg, PG; Mehta, SR; Jukema, JW; Lip, GY; Gibson, CM; Kovar, F; Kala, P; Garcia-Hernandez, A; Renfurm, RW; Granger, CB; Ruby-1, Investigators (2011). "RUBY-1: A randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome". European Heart Journal. 32 (20): 2541–54. doi:10.1093/eurheartj/ehr334. PMC   3295208 . PMID   21878434.
  8. Hirayama, F.; Koshio, H.; Ishihara, T.; Hachiya, S.; Sugasawa, K.; Koga, Y.; Seki, N.; Shiraki, R.; Shigenaga, T.; Iwatsuki, Y.; Moritani, Y.; Mori, K.; Kadokura, T.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S. (2011). "Discovery of N-2-hydroxy-6-(4-methoxybenzamido)phenyl-4- (4-methyl-1,4-diazepan-1-yl)benzamide (Darexaban, YM150) as a potent and orally available factor Xa inhibitor". Journal of Medicinal Chemistry. 54 (23): 8051–65. doi:10.1021/jm200868m. PMID   21995444.
  9. Eriksson, B. I.; Turpie, A. G.; Lassen, M. R.; Prins, M. H.; Agnelli, G.; Kälebo, P.; Wetherill, G.; Wilpshaar, J. W.; Meems, L.; ONYX-2 STUDY GROUP (2010). "Prevention of venous thromboembolism with an oral factor Xa inhibitor, YM150, after total hip arthroplasty. A dose finding study (ONYX-2)". Journal of Thrombosis and Haemostasis. 8 (4): 714–21. doi: 10.1111/j.1538-7836.2010.03748.x . PMID   20088935. S2CID   21184977.