Nickel allergy

Last updated
Nickel allergy
Blausen 0014 AllergicDermatitis.png
Specialty Allergology, immunology   OOjs UI icon edit-ltr-progressive.svg

Nickel allergy is any of several allergic conditions provoked by exposure to the chemical element nickel. Nickel allergy often takes the form of nickel allergic contact dermatitis (Ni-ACD), a form of allergic contact dermatitis (ACD). Ni-ACD typically causes a rash that is red and itchy and that may be bumpy or scaly. The main treatment for it is avoiding contact with nickel-releasing metals, such as inexpensive jewelry. Another form of nickel allergy is a systemic form: systemic nickel allergy syndrome (SNAS) can mimic some of the symptoms of irritable bowel syndrome (IBS) and also has a dermatologic component. [1]

Contents

Signs and symptoms

The most common sign of nickel allergy is inflammation of the skin at an area that comes into regular contact with nickel. [2] This often takes the form of a reddened patch of skin with raised bumps (papules) or small blisters (vesicles), and edema. [2] People with chronic dermatitis tend to have dry, scaly, and cracked skin at the site of contact. [2] These sites of inflammation (called "primary eruptions") can occur anywhere on the skin that contacts nickel, but are most common on the hands, face, or anywhere that contacts metal objects such as jewelry or metal clothes buttons. [2] Particularly high levels of nickel exposure can cause irritated patches of skin to appear at other sites on the body (called "secondary eruptions"). These typically occur as blistering rashes on the hands, eyelids, and at the inside of flexing joints (inside the elbow, back of the knee, etc.). [2]

Ingestion of nickel may cause a systemic reaction, which can result in generalized inflammation of the skin across the body, small blisters in the hands, irritation inside the flexing joints (flexural eczema), and redness and irritation of both buttocks. [2]

Systemic contact dermatitis (SCD) is defined as a dermatitis occurring in an epi-cutaneously contact-sensitized person when exposed to haptens systemically such as orally, per rectum, intravesically, transcutaneously, intrauterinely, intravenously, or by inhalation. [3]

The pathophysiology of systemic nickel allergy syndrome (SNAS) is not well understood. The clinical course is determined by an immunological interplay between two types of T cells (Th1 and Th2 responses). SCD is often considered a subset of SNAS, but with only skin manifestations. [4] SNAS presents with an array of symptoms ranging from respiratory to generalized skin rash to gastrointestinal symptoms. [5] The gastrointestinal symptoms may mimic those of irritable bowel syndrome. [1] A meta review evaluating SNAS found that 1% of patients sensitized to nickel reacted to the nickel content of a 'normal' diet, and with increasing doses of nickel more individuals reacted [6] SNAS is a multilayered immunological response demonstrating variance between individuals and doses of nickel exposure.

Causes

Nickel exposure

Nickel is both naturally abundant – it is the fifth most common element on earth – and widely used in industry and commercial goods. [2] Workplace nickel exposure is common in many industries, and the performance of normal work tasks can result in nickel skin levels sufficient to elicit dermatitis. [2] Within the workplace, individuals may be exposed to significant amounts of nickel, airborne from the combustion of fossil fuels or from contact with tools that are nickel plated. [7] Historically, workplaces where prolonged contact with soluble nickel has been high have shown high risks for allergic contact nickel dermatitis. For example, nickel dermatitis was common in the past among nickel platers. [8] Outbreaks of nickel allergy from consumer goods have been documented throughout the 20th century, with jewelry, stocking suspenders, and metallic buttons on blue jeans each resulting in dermatitis at the point of contact. [2] Nickel can also be present in food and drinking water; ingestion of increased nickel is not associated with systemic allergic disease, but is associated with flare-ups of dermatitis or aggravation of vesicular hand eczema. [2] Similarly, aggravation of dermatitis has been reported in response to nickel-containing surgical implants or dental gear. [2]

The risk of an object eliciting nickel allergy is linked to the amount of nickel released by its surface (and not to its total nickel content). [2] Suspected objects can be screened by wiping the surface with a 1% dimethylglyoxime solution that turns pink if more than 0.5 μg/cm2 per week is released by the surface. [2] Various methods exist to test the skin or nails for nickel exposure, typically relying on wiping the skin, then quantifying the nickel on the wipe via mass spectrometry. [2]

Dietary nickel exposure may come from high-nickel foods, possibly canned food (via the packaging), possibly stainless steel cookware (whereas some grades of stainless steel contain more nickel than others), or plumbing (especially the first water run from the tap in the morning). [1]

Physiology

Nickel allergy results in a skin response after the skin comes in contact with an item that releases a large amount of nickel from its surface. It is commonly associated with nickel-containing belt buckles coming into prolonged contact with the skin. [9] [10] [11] The skin reaction can occur at the site of contact, or sometimes spread beyond to the rest of the body. Free (released) nickel that is able to penetrate the skin is taken up by scavenger (dendritic) cells and then presented to the immune system T-Cells. With each subsequent exposure to nickel these T cells become stimulated and duplicate themselves. With enough exposure to nickel, the amassing clones of T-cells reach "threshold" and the skin develops a rash. The rash can appear as acute, subacute, or chronic eczema-like skin patches, primarily at the site of contact with the nickel (e.g., earlobe from nickel earrings). From the time of exposure, the rash usually appears within 12–120 hours and can last for 3–4 weeks or for the continued duration of nickel contact/exposure. [9]

Three simultaneous conditions must occur to trigger Ni-ACD:

  1. Direct skin contact with nickel-releasing item
  2. Prolonged skin contact with nickel-releasing item
  3. A sufficient amount of nickel is released and absorbed into the skin to cause a reaction [12]

The pathophysiology is divided into induction elicitation phases. Induction is the critical phase (immunological event) when skin contact to nickel results in antigen presentation to the T cells, and T cell duplication (cloning) occurs. The metal cation Ni++ is a low molecular weight hapten that easily penetrates the stratum corneum (top layer of skin). Nickel then binds to skin protein carriers creating an antigenic epitope. [13] The determining factor in sensitization is exposure of significant amounts of "free nickel". [14] This is important because different metal alloys release different amounts of free nickel. The antigenic epitope is collected by dermal dendritic cells and Langerhans cells, the antigen-presenting cells (APC) of the skin, and undergo maturation and migration to regional lymph nodes. The complex is predominantly expressed on major histocompatibility complex (MHC) II, which activates and clonally expands naive CD4+ T cells. [15] Upon re-exposure these now primed T cells will be activated and massively recruited to the skin, resulting in the elicitation phase and the clinical presentation of Ni-ACD.

Although ACD has been considered a Th1 predominate process, recent studies highlight a more complex picture. In Ni-ACD other cells are involved including: Th17, Th22, Th1/IFN and the innate immune responses consistent with toll-like receptor 4. [16] [17]

Prevention

Nickel has a wide utility of application in manufactured metals because it is both strong and malleable, leading to ubiquitous presence and the potential for consumers to be in contact with it daily. However, for those who have the rash of allergic contact dermatitis (ACD) due to a nickel allergy, it can be a challenge to avoid. Foods, common kitchen utensils, cell phones, jewelry, and many other items may contain nickel and be a source of irritation due to the allergic reaction caused by the absorption of free released nickel through direct and prolonged contact. The most appropriate measure for nickel-allergic persons is to prevent contact with the allergen.

In 2011, researchers showed that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation'. [18]

Pre-emptive avoidance strategies (PEAS) might ultimately lower the sensitization rates of children who would develop ACD [19] It is theorized that prevention of exposure to nickel early on could reduce the number of those that are sensitive to nickel by one-quarter to one-third. Identification of the many sources of nickel is vital to understanding the nickel sensitization story, food like chocolate and fish, zippers, buttons, cell phones and even orthodontic braces and eyeglass frames might contain nickel. Items that contain sentimental value (heirlooms, wedding rings) could be treated with an enamel or rhodium plating. [20]

The Dermatitis Academy has created an educational website to provide more information about nickel, including information about prevention, exposure, sources, and general information about nickel allergy. These resources provide guidance in a prevention initiative for children worldwide.

Prevention of SNAS includes modifying dietary choices to avoid certain foods that are higher in nickel than others. [1]

Diagnosis

Nickel allergy is typically diagnosed by patch testing – applying a patch with 2.5% (in North America) or 5% (in Europe) nickel sulfate to the upper back and looking for irritation on the skin. [2] As with other causes of allergic contact dermatitis, patches containing several common allergens are typically applied to the back for 48 hours, removed, then the spots examined for allergic reactions 2 to 5 days later. [21]

SNAS can often mimic IBS [1] and may be more common than is widely appreciated. [1] It therefore should be considered as a differential diagnosis item when a doctor is considering a diagnosis of IBS, [1] and nickel allergy testing is advisable as a means to exclude or confirm SNAS. [1] Even before such testing, some differentiating factors in the medical history are if certain foods prompt the symptoms (for example, peanuts or shellfish), [1] whereas IBS is not specific to those foods. [1]

Treatment

Once a nickel allergy is detected, the best treatment is avoidance of nickel-releasing items. The top 13 categories that contain nickel include beauty accessories, eyeglasses, money, cigarettes, clothes, kitchen and household, electronics and office equipment, metal utensils, aliment, jewelry, batteries, orthodontic and dental appliances, and medical equipment. [22] Other than strict avoidance of items that release free nickel, there are other treatment options for reduction of exposure. The first step is to limit friction between skin and metallic items. Susceptible people may try to limit sweating while wearing nickel items, to reduce nickel release and thus decrease chances for developing sensitization or allergy. Another option is to shield electronics, metal devices, and tools with fabric, plastic, or acrylic coverings. [22]

There are dimethylglyoxime test kits that can be very helpful to check for nickel release from items prior to purchasing. [23] The American Contact Dermatitis Society 'find a provider' resource can help identify clinicians with training in providing guidance lists of safe items. [24] In addition to avoidance, healthcare providers may prescribe additional creams or medications to help relieve the skin reaction.

Epidemiology

Nickel allergy is the most common contact allergy in industrialized countries, affecting around 8% to 19% of adults and 8% to 10% of children. [2] Women are affected 4–10 times as frequently as men. [2]

Regulation

As nickel can be harmful to skin, its use in daily products must be regulated. A safety directive has been in place in Europe since 2004. Denmark in 1980, and then shortly after the European Union (EU), enacted legislation that limited the amount of free nickel in consumer products that come in contact with the skin. This resulted in significantly decreased rates of sensitization among Danish children 0 to 18 years of age from 24.8% to 9.2% between 1985 and 1998, with similar reductions in sensitization throughout the EU. [25] [26]

No such directive exists in the United States, but efforts are under way to mandate safe use guidelines for nickel. In August 2015, the American Academy of Dermatology (AAD) adopted a nickel safety position paper. [27] The exact prevalence of Ni-ACD in the general population in the US is largely unknown. However, current estimates gauge that roughly 2.5 million US adults and 250,000 children have a nickel allergy, which costs an estimated $5.7 billion per year for treatment of symptoms. [28] Loma Linda University, Nickel Allergy Alliance, and Dermatitis Academy created the first open access self-reported patient registry to record nickel allergy prevalence data in the US.[ref 23][ full citation needed ]

History

In the 17th century, copper miners in Saxony, Germany, began to experience irritation caused by a "dark red ore". Since the substance, which would later be called nickel, led to many ailments, they believed it to be protected by "goblins", and called it "Goblin's Copper". [29] Josef Jadassohn described the first case of metal contact dermatitis in 1895, to a mercury-based therapeutic cream, and confirmed the cause by epi-cutaneous patch testing. [30] In the next century nickel began to be mass-produced for jewelry worldwide due to its cheap cost, resistance to corrosion and high supply.

In 1979 a large comprehensive study of healthy US volunteers found that 9% had been unknowingly sensitized to nickel. [31] As of 2008, that number has tripled. [32] Most importantly, nickel allergy among children is increasing, with an estimated 250,000 children sensitized to nickel. [33]

Published literature shows an exponential increase in reported nickel allergy cases. [34] The North American Contact Dermatitis Group (NACDG) patch tested 5,085 adults, presenting with eczema-like symptoms, showing 19.5% had a positive reaction to nickel. [35] Nickel allergy is also more prevalent in women (17.1%) than men (3%), possibly due to cultural norms related to jewelry and ear piercings and therefore increased exposure to nickel. [36] In order to investigate the current prevalence of nickel, Loma Linda University, Nickel Allergy Alliance, and Dermatitis Academy, [37] are conducting a self-reporting nickel allergy-dermatitis survey. [38]

Related Research Articles

<span class="mw-page-title-main">Allergy</span> Immune system response to a substance that most people tolerate well

Allergies, also known as allergic diseases, are various conditions caused by hypersensitivity of the immune system to typically harmless substances in the environment. These diseases include hay fever, food allergies, atopic dermatitis, allergic asthma, and anaphylaxis. Symptoms may include red eyes, an itchy rash, sneezing, coughing, a runny nose, shortness of breath, or swelling. Note that food intolerances and food poisoning are separate conditions.

<span class="mw-page-title-main">Dermatitis</span> Inflammatory disease of the skin

Dermatitis is inflammation of the skin, typically characterized by itchiness, redness and a rash. In cases of short duration, there may be small blisters, while in long-term cases the skin may become thickened. The area of skin involved can vary from small to covering the entire body. Dermatitis is often called eczema, and the difference between those terms is not standardized.

An allergen is a type of antigen that produces an abnormally vigorous immune response in which the immune system fights off a perceived threat that would otherwise be harmless to the body. Such reactions are called allergies.

<span class="mw-page-title-main">Irritant diaper dermatitis</span> Medical condition

Irritant diaper dermatitis is a generic term applied to skin rash in the diaper area that are caused by various skin disorders and/or irritants.

<span class="mw-page-title-main">Contact dermatitis</span> Inflammation from allergen or irritant exposure

Contact dermatitis is a type of acute or chronic inflammation of the skin caused by exposure to chemical or physical agents. Symptoms of contact dermatitis can include itchy or dry skin, a red rash, bumps, blisters, or swelling. These rashes are not contagious or life-threatening, but can be very uncomfortable.

<span class="mw-page-title-main">Latex allergy</span> Medical condition

Latex allergy is a medical term encompassing a range of allergic reactions to the proteins present in natural rubber latex. It generally develops after repeated exposure to products containing natural rubber latex. When latex-containing medical devices or supplies come in contact with mucous membranes, the membranes may absorb latex proteins. In some susceptible people, the immune system produces antibodies that react immunologically with these antigenic proteins. Many items contain or are made from natural rubber, including shoe soles, pen grips, hot water bottles, elastic bands, rubber gloves, condoms, baby-bottle nipples, and balloons; consequently, there are many possible routes of exposure that may trigger a reaction. People with latex allergies may also have or develop allergic reactions to some fruits, such as bananas.

<span class="mw-page-title-main">Photodermatitis</span> Skin condition

Photodermatitis, sometimes referred to as sun poisoning or photoallergy, is a form of allergic contact dermatitis in which the allergen must be activated by light to sensitize the allergic response, and to cause a rash or other systemic effects on subsequent exposure. The second and subsequent exposures produce photoallergic skin conditions which are often eczematous. It is distinct from sunburn.

<span class="mw-page-title-main">Hives</span> Skin disease characterized by red, raised, and itchy bumps

Hives, also known as urticaria, is a kind of skin rash with red, raised, itchy bumps. Hives may burn or sting. The patches of rash may appear on different body parts, with variable duration from minutes to days, and does not leave any long-lasting skin change. Fewer than 5% of cases last for more than six weeks. The condition frequently recurs.

<span class="mw-page-title-main">Atopy</span> Predisposition towards allergy

Atopy is the tendency to produce an exaggerated immunoglobulin E (IgE) immune response to otherwise harmless substances in the environment. Allergic diseases are clinical manifestations of such inappropriate, atopic responses.

<span class="mw-page-title-main">Atopic dermatitis</span> Long-term form of skin inflammation

Atopic dermatitis (AD), also known as atopic eczema, is a long-term type of inflammation of the skin (dermatitis). It results in itchy, red, swollen, and cracked skin. Clear fluid may come from the affected areas, which can thicken over time. AD may also simply be called eczema, a term that generally refers to a larger group of skin conditions.

<span class="mw-page-title-main">Urushiol-induced contact dermatitis</span> Medical condition

Urushiol-induced contact dermatitis is a type of allergic contact dermatitis caused by the oil urushiol found in various plants, most notably sumac family species of the genus Toxicodendron: poison ivy, poison oak, poison sumac, and the Chinese lacquer tree. The name is derived from the Japanese word for the sap of the Chinese lacquer tree, urushi. Other plants in the sumac family also contain urushiol, as do unrelated plants such as Ginkgo biloba.

<span class="mw-page-title-main">Patch test</span> Medical test to determine substances causing allergic reactions

A patch test is a diagnostic method used to determine which specific substances cause allergic inflammation of a patient's skin.

<span class="mw-page-title-main">Allergic contact dermatitis</span> Medical condition

Allergic contact dermatitis (ACD) is a form of contact dermatitis that is the manifestation of an allergic response caused by contact with a substance; the other type being irritant contact dermatitis (ICD).

<span class="mw-page-title-main">Tetrazepam</span> Chemical compound

Tetrazepam is a benzodiazepine derivative with anticonvulsant, anxiolytic, muscle relaxant and slightly hypnotic properties. It was formerly used mainly in Austria, France, Belgium, Germany and Spain to treat muscle spasm, anxiety disorders such as panic attacks, or more rarely to treat depression, premenstrual syndrome or agoraphobia. Tetrazepam has relatively little sedative effect at low doses while still producing useful muscle relaxation and anxiety relief. The Co-ordination Group for Mutual Recognition and Decentralised Procedures-Human endorsed the Pharmacovigilance Risk Assessment Committee (PRAC) recommendation to suspend the marketing authorisations of tetrazepam-containing medicines across the European Union (EU) in April 2013. The European Commission has confirmed the suspension of the marketing authorisations for Tetrazepam in Europe because of cutaneous toxicity, effective from the 1 August 2013.

<span class="mw-page-title-main">Benzisothiazolinone</span> Chemical compound

Benzisothiazolinone (BIT) is an organic compound with the formula C6H4SN(H)CO. A white solid, it is structurally related to isothiazole, and is part of a class of molecules called isothiazolinones. BIT is widely used as a preservative and antimicrobial.

MELISA is a blood test that detects type IV hypersensitivity to metals, chemicals, environmental toxins and molds. Type IV hypersensitivity reactions, particularly to nickel, are well established and may affect 20% of the population.

One of the most prevalent forms of adverse drug reactions is cutaneous reactions, with drug-induced urticaria ranking as the second most common type, preceded by drug-induced exanthems. Urticaria, commonly known as hives, manifests as weals, itching, burning, redness, swelling, and angioedema—a rapid swelling of lower skin layers, often more painful than pruritic. These symptoms may occur concurrently, successively, or independently. Typically, when a drug triggers urticaria, symptoms manifest within 24 hours of ingestion, aiding in the identification of the causative agent. Urticaria symptoms usually subside within 1–24 hours, while angioedema may take up to 72 hours to resolve completely.

Perfume intolerance or perfume allergy is a condition wherein people exhibit sensitivity or allergic reactions to ingredients in some perfumes and some other fragrances. It is a form of multiple chemical sensitivity, a more general phenomenon for this diagnosis.

<span class="mw-page-title-main">Lip licker's dermatitis</span> Medical condition

Lip licker's dermatitis is a type of skin inflammation around the lips due to damage by saliva from repetitive lip licking and is classified as a subtype of irritant contact cheilitis. The resulting scaling, redness, chapping, and crusting makes a well-defined ring around the lips. The rash may extend as far as the tongue can reach and usually does not occur at the corners of the mouth. It commonly occurs during winter months but some people can have it year-round if lip licking is a chronic habit.

<span class="mw-page-title-main">Metal allergy</span> Medical condition

Metal allergies inflame the skin after it has been in contact with metal. They are a form of allergic contact dermatitis. They are becoming more common, as of 2021, except in areas with regulatory countermeasures.

References

  1. 1 2 3 4 5 6 7 8 9 10 Tate, Nick. "Are You Misdiagnosing IBS? Watch Out for This Mimic". Medscape. Retrieved 2023-04-12.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD (October 2019). "Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment". Contact Dermatitis. 81 (4): 227–241. doi: 10.1111/cod.13327 . PMID   31140194. S2CID   169036955.
  3. Veien NK (December 2011). "Systemic contact dermatitis". International Journal of Dermatology. 50 (12): 1445–56. doi:10.1111/j.1365-4632.2011.05104.x. PMID   22097987. S2CID   43174907.
  4. Di Gioacchino M, Ricciardi L, De Pità O, Minelli M, Patella V, Voltolini S, Di Rienzo V, Braga M, Ballone E, Mangifesta R, Schiavino D (February 2014). "Nickel oral hyposensitization in patients with systemic nickel allergy syndrome". Annals of Medicine. 46 (1): 31–7. doi:10.3109/07853890.2013.861158. PMC   4673509 . PMID   24256166.
  5. Matiz C, Jacob SE (2011). "Systemic contact dermatitis in children: how an avoidance diet can make a difference". Pediatric Dermatology. 28 (4): 368–74. doi:10.1111/j.1525-1470.2010.01130.x. PMID   20807367. S2CID   11131414.
  6. Jensen CS, Menné T, Johansen JD (February 2006). "Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta-analysis". Contact Dermatitis. 54 (2): 79–86. doi: 10.1111/j.0105-1873.2006.00773.x . PMID   16487279. S2CID   19825855.
  7. Grandjean P (1984). "Human exposure to nickel". IARC Scientific Publications (53): 469–85. PMID   6241927.
  8. "Knowledge of properties and safe use of substances | Nickel Institute". www.nickelinstitute.org.
  9. 1 2 Usatine R (May 2001). "A belt buckle allergy?". The Western Journal of Medicine. 174 (5): 307–8. doi:10.1136/ewjm.174.5.307. PMC   1071380 . PMID   11342499.
  10. "Nickel allergy - Symptoms and causes". Mayo Clinic .
  11. "Nickel Contact Dermatitis Picture Image on MedicineNet.com".
  12. "What Do You Need To Know About Nickel Allergy?" (PDF).
  13. Lu L, Vollmer J, Moulon C, Weltzien HU, Marrack P, Kappler J (March 2003). "Components of the ligand for a Ni++ reactive human T cell clone". The Journal of Experimental Medicine. 197 (5): 567–74. doi:10.1084/jem.20021762. PMC   2193829 . PMID   12615898.
  14. Silverberg NB, Licht J, Friedler S, Sethi S, Laude TA (2002). "Nickel contact hypersensitivity in children". Pediatric Dermatology. 19 (2): 110–3. doi:10.1046/j.1525-1470.2002.00057.x. PMID   11994170. S2CID   38975103.
  15. Girolomoni G, Gisondi P, Ottaviani C, Cavani A (April 2004). "Immunoregulation of allergic contact dermatitis". The Journal of Dermatology. 31 (4): 264–70. doi:10.1111/j.1346-8138.2004.tb00671.x. PMID   15187320. S2CID   25609386.
  16. Peana M, Zdyb K, Medici S, Pelucelli A, Simula G, Gumienna-Kontecka E, Zoroddu MA (December 2017). "Ni(II) interaction with a peptide model of the human TLR4 ectodomain". Journal of Trace Elements in Medicine and Biology . 44: 151–160. doi:10.1016/j.jtemb.2017.07.006. PMID   28965571.
  17. Dhingra N, Shemer A, Correa da Rosa J, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E (August 2014). "Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response". The Journal of Allergy and Clinical Immunology. 134 (2): 362–72. doi:10.1016/j.jaci.2014.03.009. PMID   24768652.
  18. Vemula PK, Anderson RR, Karp JM (2011). "Nanoparticles reduce nickel allergy by capturing metal ions". Nature Nanotechnology. 6 (5): 291–5. Bibcode:2011NatNa...6..291V. doi:10.1038/nnano.2011.37. PMID   21460828.
  19. Hill H, Goldenberg A, Golkar L, Beck K, Williams J, Jacob SE (2016). "Pre-Emptive Avoidance Strategy (P.E.A.S.) - addressing allergic contact dermatitis in pediatric populations". Expert Review of Clinical Immunology. 12 (5): 551–61. doi:10.1586/1744666X.2016.1142373. PMID   26764601. S2CID   31364750.
  20. Hill H, Goldenberg A, Sheehan MP, Patel A, Jacob SE (2015). "Nickel-Free Alternatives Raise Awareness". Dermatitis: Contact, Atopic, Occupational, Drug. 26 (6): 245–53. doi:10.1097/DER.0000000000000135. PMID   26551602. S2CID   9642987.
  21. Nixon RL, Allnutt KJ, Diepgen TL (2020). "Contact Dermatitis". Middleton's Allergy: Principles and Practice (9 ed.). Elsevier. pp. 553–561. ISBN   978-0-323-54424-5.
  22. 1 2 "Be Nickel Aware" (PDF). Dermatitis Academy. Retrieved 2018-06-05.
  23. Testing For Nickel www.dermatitisacademy.com, accessed 7 October 2021
  24. Find a Provider www.contactderm.org, accessed 7 October 2021
  25. Johansen JD, Menné T, Christophersen J, Kaaber K, Veien N (March 2000). "Changes in the pattern of sensitization to common contact allergens in denmark between 1985-86 and 1997-98, with a special view to the effect of preventive strategies". The British Journal of Dermatology. 142 (3): 490–5. doi:10.1046/j.1365-2133.2000.03362.x. PMID   10735956. S2CID   22827812.
  26. Thyssen JP, Uter W, McFadden J, Menné T, Spiewak R, Vigan M, Gimenez-Arnau A, Lidén C (March 2011). "The EU Nickel Directive revisited--future steps towards better protection against nickel allergy". Contact Dermatitis. 64 (3): 121–5. doi:10.1111/j.1600-0536.2010.01852.x. PMID   21226718. S2CID   33789432.
  27. "Position Statement on Nickel Sensitivity" (PDF). American Academy of Dermatology.
  28. Jacob SE, Goldenberg A, Pelletier JL, Fonacier LS, Usatine R, Silverberg N (2015). "Nickel Allergy and Our Children's Health: A Review of Indexed Cases and a View of Future Prevention". Pediatric Dermatology. 32 (6): 779–785. doi:10.1111/pde.12639. PMID   26212605. S2CID   23566200.
  29. Baldwin WH (1931). "The story of nickel. How "old nick's" gnomes were outwitted". Journal of Chemical Education. 8 (9): 1749. Bibcode:1931JChEd...8.1749B. doi:10.1021/ed008p1749.
  30. Jadassohn J (1895). "Zur Kenntnis der medikamentösen Dermatosen". Verhandlungen der Deutschen Dermatologischen Gesellschaft. Fünfter Kongress, Raz (in German). Berlin: Julius Springer. pp. 103–129.
  31. Prystowsky SD, Allen AM, Smith RW, Nonomura JH, Odom RB, Akers WA (August 1979). "Allergic contact hypersensitivity to nickel, neomycin, ethylenediamine, and benzocaine. Relationships between age, sex, history of exposure, and reactivity to standard patch tests and use tests in a general population". Archives of Dermatology. 115 (8): 959–62. doi:10.1001/archderm.1979.04010080023015. PMID   157103.
  32. Rietschel RL, Fowler JF, Warshaw EM, Belsito D, DeLeo VA, Maibach HI, Marks JG, Mathias CG, Pratt M, Sasseville D, Storrs FJ, Taylor JS, Zug KA (2008). "Detection of nickel sensitivity has increased in North American patch-test patients". Dermatitis. 19 (1): 16–9. doi:10.2310/6620.2008.06062. PMID   18346391. S2CID   35281633.
  33. Jacob SE, Goldenberg A, Pelletier JL, Fonacier LS, Usatine R, Silverberg N (2015). "Nickel Allergy and Our Children's Health: A Review of Indexed Cases and a View of Future Prevention". Pediatric Dermatology. 32 (6): 779–85. doi:10.1111/pde.12639. PMID   26212605. S2CID   23566200.
  34. Goldenberg A, Vassantachart J, Lin EJ, Lampel HP, Jacob SE (2015). "Nickel Allergy in Adults in the U.S.: 1962 to 2015". Dermatitis. 26 (5): 216–23. doi:10.1097/der.0000000000000130. PMID   26177034. S2CID   12484596.
  35. Fransway AF, Zug KA, Belsito DV, Deleo VA, Fowler JF, Maibach HI, Marks JG, Mathias CG, Pratt MD, Rietschel RL, Sasseville D, Storrs FJ, Taylor JS, Warshaw EM, Dekoven J, Zirwas M (2013). "North American Contact Dermatitis Group patch test results for 2007-2008". Dermatitis. 24 (1): 10–21. doi:10.1097/der.0b013e318277ca50. PMID   23340394. S2CID   19896353.
  36. Thyssen JP, Menné T (February 2010). "Metal allergy--a review on exposures, penetration, genetics, prevalence, and clinical implications". Chemical Research in Toxicology. 23 (2): 309–18. doi:10.1021/tx9002726. PMID   19831422.
  37. dermatitisacademy www.dermatitisacademy.com, accessed 7 October 2021
  38. forms Loma Linda University (restricted access site)

Further reading