T helper 17 cell

Last updated

T helper 17 cells (Th17) are a subset of pro-inflammatory T helper cells defined by their production of interleukin 17 (IL-17). They are related to T regulatory cells and the signals that cause Th17s to actually inhibit Treg differentiation. [1] However, Th17s are developmentally distinct from Th1 and Th2 lineages. Th17 cells play an important role in maintaining mucosal barriers and contributing to pathogen clearance at mucosal surfaces; such protective and non-pathogenic Th17 cells have been termed as Treg17 cells. [2]

Contents

They have also been implicated in autoimmune and inflammatory disorders. The loss of Th17 cell populations at mucosal surfaces has been linked to chronic inflammation and microbial translocation. These regulatory Th17 cells can be generated by TGF-beta plus IL-6 in vitro.

Differentiation

Like conventional regulatory T cells (Treg), induction of regulatory Treg17 cells could play an important role in modulating and preventing certain autoimmune diseases. Treg17 (Regulatory Th17) cells are generated from CD4 + T cells.

Transforming growth factor beta (TGF-β), interleukin 6 (IL-6), interleukin 21 (IL-21) and interleukin 23 (IL-23) contribute to Th17 formation in mice and humans. Key factors in the differentiation of Th17 cells are signal transducer and the activator of transcription 3 (Stat3) and retinoic acid receptor-related orphan receptors gamma (RORγ) and alpha (RORα). [3] Th17 cells are differentiated when naive T cells are exposed to the cytokines mentioned above. These cytokines are produced by activated antigen presenting cells (APCs) after contact with pathogens. [4] The Th17 cells can alter their differentiation program ultimately giving rise to either protective or pro-inflammatory pathogenic cells. The protective and non-pathogenic Th17 cells induced by IL-6 and TGF-β are termed as Treg17 cells. The pathogenic Th17 cells are induced by IL-23 and IL-1β. [5] IL-21, produced by Th17 cells themselves, has also been shown to initiate an alternative route for the activation of Th17 populations. [6] Both interferon gamma (IFNγ) and IL-4, the main stimulators of Th1 and Th2 differentiation, respectively, have been shown to inhibit Th17 differentiation.[ citation needed ]

Similar to Th17 cells the Treg17 development depended on the transcription factor Stat3. [7]

Function

Th17 cells play a role in adaptive immunity protecting the body against pathogens. However, anti-fungal immunity appears to be limited to particular sites with detrimental effects observed. [8] Their main effector cytokines are IL-17A, IL-17F, IL-21, and IL-22, [9] as well as granulocyte-macrophage colony-stimulating factor (GM-CSF). IL-17 family cytokines (IL-17A and IL-17F) target innate immune cells and epithelial cells, among others, to produce G-CSF and IL-8 (CXCL8), which leads to neutrophil production and recruitment. In this way, Th17 cell lineage appears to be one of the three major subsets of effector T cells, as these cells are involved in regulation of neutrophils, while Th2 cells regulate eosinophils, basophils and mast cells, and Th1 cells regulate macrophages and monocytes. [10] Thus, three T helper cell subsets are able to influence the myeloid part of the immune system, largely responsible for innate defense against pathogens.

Treg17 cells with regulatory phenotype with in vivo immune-suppressive properties in the gut have also been identified as rTh17 cells. [11]

Treg17 cells produce IL-17 and IL-10 and low level of IL-22 and suppress autoimmune and other immune responses. CD4+ T cells polarized with IL-23 and IL-6 are pathogenic upon adoptive transfer in type 1 diabetes while cells polarized with TGF-beta and IL-6 are not pathogenic., [12] [13] The intracellular aryl hydrocarbon receptor (AhR), which is activated by certain aromatic compounds, is specifically expressed in Treg17 cells. [14] These cells are regulated by IL-23 and TGF-beta. [15] [16] [17] The production of IL-22 in this subset of Th17 cells is regulated by AhR and Treg17 cells are depend on activation of the transcription factor Stat3. In a steady state, TGF-beta and AhR ligands induce low expression of IL-22 along with high expression of AhR, c-MAF, IL-10, and IL-21 that might play a protective role in cell regeneration and host microbiome homeostasis.

Th17 cells mediate the regression of tumors in mice, [18] [19] but were also found to promote tumor formation induced by colonic inflammation in mice. [20] Like other T helper cells, Th17 cells closely interact with B cells in response to pathogens. Th17 cells are involved in B cell recruitment through CXCL13 chemokine signaling, and Th17 activity may encourage antibody production. [21]

Treg17 cells regulate the function of Th17 cells that are important role in the host defense against fungal and bacterial pathogens and participate in the pathogenesis of multiple inflammatory and autoimmune disorders. Selective deletion of Stat3 caused spontaneous severe colitis because of the lack of Treg17 cells and increase in pathogenic Th17 cells. The mechanism of Treg17 cell action is expression of chemokine receptor CCR6, which facilitates trafficking into areas of Th17 inflammation. This is also seen in human disease such glomerulonephritis (GN) in the kidney. Conversion of pathogenic Th17 cells in vivo at the conclusion of an inflammatory disease process by TGF-β results in the generation of Treg17 like cells. [22] There is also conservation across species of Treg17 cells.

In disease

The dysregulation of Th17 and switch to Th17 pathogenic phenotype cells have been associated with autoimmune disorders and inflammation. In the case of autoimmune disorders, Th17 cell over activation can cause an inappropriate amount of inflammation, like in the case of rheumatoid arthritis. Th17 cells have also been shown to be necessary for maintenance of mucosal immunity. In HIV, the loss of Th17 cell populations can contribute to chronic infection.

Role in autoimmune disorders

Th17 cells, particularly auto-specific Th17 cells, are associated with autoimmune disease such as multiple sclerosis, rheumatoid arthritis, and psoriasis. [9] Th17 overactivation against autoantigen will cause type 3 immune complex and complement-mediated hypersensitivity. Rheumatoid arthritis or Arthus reaction belong to this category. [23] Apart from autoantigen reactivity, Th17 cells' inherent biology of low end MAP kinases signalling, especially Erk1/2 and p38, help their survival by refusing activation induced cell death (AICD). [24] Together, excessive activity against autoantigen and prolonged existence of Th17 cells have deleterious consequence in autoimmune disease like Rheumatoid arthritis. [25]

Bone erosion caused by mature osteoclast cells is common in patients with rheumatoid arthritis. Activated T helper cells such as Th1, Th2, and Th17 are found in the synovial cavity during the time of inflammation due to rheumatoid arthritis. The known mechanisms associated with the differentiation of osteoclast precursors into mature osteoclasts involve the signaling molecules produced by immune-associated cells, as well as the direct cell to cell contact of osteoblasts and osteoclast precursors. However, it has been suggested that Th17 can also play a more major role in osteoclast differentiation via cell to cell contact with osteoclast precursors. [26] [27]

Th17 cells may contribute to the development of late phase asthmatic response due to its increases in gene expression relative to Treg cells. [28]

Contribution of Th17 cells in HIV pathogenesis

The depletion of Th17 cell populations in the intestine disrupts the intestinal barrier, increases levels of movement of bacteria out of the gut through microbial translocation, and contributes to chronic HIV infection and progression to AIDS. [29] Microbial translocation results in bacteria moving from out of the gut lumen, into the lamina propria, to the lymph nodes, and beyond into non-lymphatic tissues. It can cause the constant immune activation seen through the body in the late stages of HIV. Increasing Th17 cell populations in the intestine has been shown to be both an effective treatment as well as possibly preventative. [30]

Although all CD4+ T cells gut are severely depleted by HIV, the loss of intestinal Th17 cells in particular has been linked to symptoms of chronic, pathogenic HIV and SIV infection. Microbial translocation is a major factor that contributes to chronic inflammation and immune activation in the context of HIV. [31] In non-pathogenic cases of SIV, microbial translocation is not observed. Th17 cells prevent severe HIV infection by maintaining the intestinal epithelial barrier during HIV infection in the gut. [30] Because of their high levels of CCR5 expression, the coreceptor for HIV, they are preferentially infected and depleted. [32] Thus, it is through Th17 cell depletion that microbial translocation occurs.

Additionally, the loss of Th17 cells in the intestine leads to a loss of balance between inflammatory Th17 cells and Treg cells, their anti-inflammatory counterparts. Because of their immunosuppressive properties, they are thought to decrease the anti-viral response to HIV, contributing to pathogenesis. There is more Treg activity compared to Th17 activity, and the immune response to the virus is less aggressive and effective. [29]

Revitalizing Th17 cells has been shown to decrease symptoms of chronic infection, including decreased inflammation, and results in improved responses to highly active anti-retroviral treatment (HAART). This is an important finding—microbial translocation general results in unresponsiveness to HAART. Patients continue to exhibit symptoms and do not show as reduced a viral load as expected. [33] In an SIV-rhesus monkey model, it was found that administering IL-21, a cytokine shown to encourage Th17 differentiation and proliferation, decreases microbial translocation by increasing Th17 cell populations. [30] It is hopeful that more immunotherapies targeting Th17 cells could help patients who do not respond well to HAART.

In addition, Th17 cells are cellular reservoirs of virus in patients submitted to antiretroviral therapy (in addition to the major cell sanctuary which are follicular Th cells) and should contribute to the latency of the HIV infection. [34]

Contribution of Th17 cells in tuberculosis

Recent studies have recognized that Th17 T cells may play a role in tuberculosis. Polyfunctional T cells with Th17 T cell features are depleted in individuals that progress to active TB after infection. In freshly resected lung tissue, from individuals with active or previous TB, CD4+ T cells have been identified that are enriched for IL-17–producing cells, including antigen specific T cells. [35] A cohort study conducted in Peru demonstrated that individuals who progressed to develop active TB after infection were depleted in Th17 functioning T cells. [36]

Role of vitamin D

The active form of vitamin D (1,25-Dihydroxyvitamin D3) has been found to 'severely impair' [37] production of the IL-17 and IL-17F cytokines by Th17 cells. Thus, active form of vitamin D is a direct inhibitor for Th17 differentiation. In this way, oral administration of vitamin D3 was proposed to be a promising tool for the treatment of Th17-mediated diseases. [38] In young patients with asthma 1,25-Dihydroxyvitamin D3-treated dendritic cells significantly reduced the percentage of Th17 cells, as well as IL-17 production. [39]

History of research

Intensive research starting in 2004 in mouse models elucidated its transcription factors and the cytokines that provoke differentiation. [40]

Related Research Articles

<span class="mw-page-title-main">T helper cell</span> Type of immune cell

The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils. CD4+ cells are mature Th cells that express the surface protein CD4. Genetic variation in regulatory elements expressed by CD4+ cells determines susceptibility to a broad class of autoimmune diseases.

The regulatory T cells (Tregs or Treg cells), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Treg cells are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Treg cells express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4+ cells. Because effector T cells also express CD4 and CD25, Treg cells are very difficult to effectively discern from effector CD4+, making them difficult to study. Research has found that the cytokine transforming growth factor beta (TGF-β) is essential for Treg cells to differentiate from naïve CD4+ cells and is important in maintaining Treg cell homeostasis.

<span class="mw-page-title-main">FOXP3</span> Immune response protein

FOXP3, also known as scurfin, is a protein involved in immune system responses. A member of the FOX protein family, FOXP3 appears to function as a master regulator of the regulatory pathway in the development and function of regulatory T cells. Regulatory T cells generally turn the immune response down. In cancer, an excess of regulatory T cell activity can prevent the immune system from destroying cancer cells. In autoimmune disease, a deficiency of regulatory T cell activity can allow other autoimmune cells to attack the body's own tissues.

<span class="mw-page-title-main">Interleukin 1 beta</span> Mammalian protein found in Homo sapiens

Interleukin-1 beta (IL-1β) also known as leukocytic pyrogen, leukocytic endogenous mediator, mononuclear cell factor, lymphocyte activating factor and other names, is a cytokine protein that in humans is encoded by the IL1B gene. There are two genes for interleukin-1 (IL-1): IL-1 alpha and IL-1 beta. IL-1β precursor is cleaved by cytosolic caspase 1 to form mature IL-1β.

<span class="mw-page-title-main">Interleukin 21</span> Mammalian protein found in humans

Interleukin 21 (IL-21) is a protein that in humans is encoded by the IL21 gene.

Interleukin 27 (IL-27) is a member of the IL-12 cytokine family. It is a heterodimeric cytokine that is encoded by two distinct genes, Epstein-Barr virus-induced gene 3 (EBI3) and IL-27p28. IL-27 is expressed by antigen presenting cells and interacts with a specific cell-surface receptor complex known as IL-27 receptor (IL-27R). This receptor consists of two proteins, IL-27Rɑ and gp130. IL-27 induces differentiation of the diverse populations of T cells in the immune system and also upregulates IL-10.

<span class="mw-page-title-main">Interleukin 26</span>

Interleukin-26 (IL-26) is a protein that in humans is encoded by the IL26 gene.

<span class="mw-page-title-main">Interleukin 17</span> Group of proteins

Interleukin 17 family is a family of pro-inflammatory cystine knot cytokines. They are produced by a group of T helper cell known as T helper 17 cell in response to their stimulation with IL-23. Originally, Th17 was identified in 1993 by Rouvier et al. who isolated IL17A transcript from a rodent T-cell hybridoma. The protein encoded by IL17A is a founding member of IL-17 family. IL17A protein exhibits a high homology with a viral IL-17-like protein encoded in the genome of T-lymphotropic rhadinovirus Herpesvirus saimiri. In rodents, IL-17A is often referred to as CTLA8.

<span class="mw-page-title-main">Interleukin 19</span> Protein-coding gene in the species Homo sapiens

Interleukin 19 (IL-19) is an immunosuppressive protein that belongs to the IL-10 cytokine subfamily.

In immunology, peripheral tolerance is the second branch of immunological tolerance, after central tolerance. It takes place in the immune periphery. Its main purpose is to ensure that self-reactive T and B cells which escaped central tolerance do not cause autoimmune disease. Peripheral tolerance prevents immune response to harmless food antigens and allergens, too.

Interleukin 35 (IL-35) is a recently discovered anti-inflammatory cytokine from the IL-12 family. Member of IL-12 family - IL-35 is produced by wide range of regulatory lymphocytes and plays a role in immune suppression. IL-35 can block the development of Th1 and Th17 cells by limiting early T cell proliferation.

<span class="mw-page-title-main">Interleukin-17A</span> Protein-coding gene in the species Homo sapiens

Interleukin-17A is a protein that in humans is encoded by the IL17A gene. In rodents, IL-17A used to be referred to as CTLA8, after the similarity with a viral gene.

<span class="mw-page-title-main">IL2RA</span> Mammalian protein found in Homo sapiens

Interleukin-2 receptor alpha chain is a protein involved in assembly of high-affinity Interleukin-2 receptor, consisting of alpha (IL2RA), beta (IL2RB) and the common gamma chain (IL2RG). As the name indicates, this receptor interacts with pleiotropic cytokine called Interleukin-2, which effect is mainly important for immune homeostasis.

T helper 3 cells (Th3) are a subset of T lymphocytes with immunoregulary and immunosuppressive functions, that can be induced by administration of foreign oral antigen. Th3 cells act mainly through the secretion of anti-inflammatory cytokine transforming growth factor beta (TGF-β). Th3 have been described both in mice and human as CD4+FOXP3 regulatory T cells. Th3 cells were first described in research focusing on oral tolerance in the experimental autoimmune encephalitis (EAE) mouse model and later described as CD4+CD25FOXP3LAP+ cells, that can be induced in the gut by oral antigen through T cell receptor (TCR) signalling.

<span class="mw-page-title-main">Fiona Powrie</span> Sidney Truelove Professor of Gastroenterology

Dame Fiona Magaret Powrie is currently the head of the Kennedy Institute of Rheumatology at the University of Oxford. Formerly she was the inaugural Sidney Truelove Professor of Gastroenterology at the University of Oxford. She is also head of the Experimental Medicine Division of the Nuffield Department of Clinical Medicine.

Regulatory B cells (Bregs or Breg cells) represent a small population of B cells that participates in immunomodulation and in the suppression of immune responses. The population of Bregs can be further separated into different human or murine subsets such as B10 cells, marginal zone B cells, Br1 cells, GrB+B cells, CD9+ B cells, and even some plasmablasts or plasma cells. Bregs regulate the immune system by different mechanisms. One of the main mechanisms is the production of anti-inflammatory cytokines such as interleukin 10 (IL-10), IL-35, or transforming growth factor beta (TGF-β). Another known mechanism is the production of cytotoxic Granzyme B. Bregs also express various inhibitory surface markers such as programmed death-ligand 1 (PD-L1), CD39, CD73, and aryl hydrocarbon receptor. The regulatory effects of Bregs were described in various models of inflammation, autoimmune diseases, transplantation reactions, and in anti-tumor immunity.

In cell biology, TH9 cells are a sub-population of CD4+T cells that produce interleukin-9 (IL-9). They play a role in defense against helminth infections, in allergic responses, in autoimmunity, and tumor suppression.

<span class="mw-page-title-main">Type 3 innate lymphoid cells</span>

Type 3 innate lymphoid cells (ILC3) are immune cells from the lymphoid lineage that are part of the innate immune system. These cells participate in innate mechanisms on mucous membranes, contributing to tissue homeostasis, host-commensal mutualism and pathogen clearance. They are part of a heterogeneous group of innate lymphoid cells, which is traditionally divided into three subsets based on their expression of master transcription factors as well as secreted effector cytokines - ILC1, ILC2 and ILC3.

Tolerogenic dendritic cells are heterogenous pool of dendritic cells with immuno-suppressive properties, priming immune system into tolerogenic state against various antigens. These tolerogenic effects are mostly mediated through regulation of T cells such as inducing T cell anergy, T cell apoptosis and induction of Tregs. Tol-DCs also affect local micro-environment toward tolerogenic state by producing anti-inflammatory cytokines.

Th22 cells are subpopulation of CD4+ T cells that produce interleukin-22 (IL-22). They play a role in the protective mechanisms against variety of bacterial pathogens, tissue repair and wound healing, and also in pathologic processes, including inflammations, autoimmunity, tumors, and digestive organs damages.

References

  1. Hartigan-O'Connor DJ, Hirao LA, McCune JM, Dandekar S (May 2011). "Th17 cells and regulatory T cells in elite control over HIV and SIV". Current Opinion in HIV and AIDS. 6 (3): 221–7. doi:10.1097/COH.0b013e32834577b3. PMC   4079838 . PMID   21399494.
  2. Singh B, Schwartz JA, Sandrock C, Bellemore SM, Nikoopour E (November 2013). "Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells". The Indian Journal of Medical Research. 138 (5): 591–4. PMC   3928692 . PMID   24434314.
  3. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. (September 2006). "The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells". Cell. 126 (6): 1121–33. doi: 10.1016/j.cell.2006.07.035 . PMID   16990136. S2CID   9034013.
  4. Guglani L, Khader SA (March 2010). "Th17 cytokines in mucosal immunity and inflammation". Current Opinion in HIV and AIDS. 5 (2): 120–7. doi:10.1097/coh.0b013e328335c2f6. PMC   2892849 . PMID   20543588.
  5. Singh B, Schwartz JA, Sandrock C, Bellemore SM, Nikoopour E (November 2013). "Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells". The Indian Journal of Medical Research. 138 (5): 591–4. PMC   3928692 . PMID   24434314.
  6. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. (July 2007). "IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells". Nature. 448 (7152): 484–487. Bibcode:2007Natur.448..484K. doi:10.1038/nature05970. PMC   3805028 . PMID   17581588.
  7. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (November 2009). "CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner". Science. 326 (5955): 986–91. Bibcode:2009Sci...326..986C. doi:10.1126/science.1172702. PMC   4408196 . PMID   19797626.
  8. Vautier S, Sousa M, Brown GD (December 2010). "C-type lectins, fungi and Th17 responses". Cytokine & Growth Factor Reviews. 21 (6): 405–12. doi:10.1016/j.cytogfr.2010.10.001. PMC   3001956 . PMID   21075040.
  9. 1 2 Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar M, García-Magallanes N, Vibanco-Pérez N (August 2014). "Th17 cells in autoimmune and infectious diseases". International Journal of Inflammation. 2014: 651503. doi: 10.1155/2014/651503 . PMC   4137509 . PMID   25152827.
  10. Weaver CT, Elson CO, Fouser LA, Kolls JK (January 2013). "The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin". Annual Review of Pathology. 8 (1): 477–512. doi:10.1146/annurev-pathol-011110-130318. PMC   3965671 . PMID   23157335.
  11. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, et al. (July 2011). "Control of TH17 cells occurs in the small intestine". Nature. 475 (7357): 514–8. doi:10.1038/nature10228. PMC   3148838 . PMID   21765430.
  12. Bellemore SM, Nikoopour E, Schwartz JA, Krougly O, Lee-Chan E, Singh B (December 2015). "Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice". Clinical and Experimental Immunology. 182 (3): 261–9. doi:10.1111/cei.12691. PMC   4636888 . PMID   26250153.
  13. Nikoopour E, Schwartz JA, Huszarik K, Sandrock C, Krougly O, Lee-Chan E, Singh B (May 2010). "Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes". Journal of Immunology. 184 (9): 4779–88. doi:10.4049/jimmunol.0902822. PMID   20363968. S2CID   207422604.
  14. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014). "The aryl hydrocarbon receptor: multitasking in the immune system". Annual Review of Immunology. 32: 403–32. doi: 10.1146/annurev-immunol-032713-120245 . PMID   24655296.
  15. Kluger MA, Luig M, Wegscheid C, Goerke B, Paust HJ, Brix SR, et al. (June 2014). "Stat3 programs Th17-specific regulatory T cells to control GN". Journal of the American Society of Nephrology. 25 (6): 1291–302. doi:10.1681/ASN.2013080904. PMC   4033381 . PMID   24511136.
  16. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. (October 2010). "Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling". Nature. 467 (7318): 967–71. Bibcode:2010Natur.467..967G. doi:10.1038/nature09447. PMC   3108066 . PMID   20962846.
  17. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (December 2007). "TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology". Nature Immunology. 8 (12): 1390–7. doi:10.1038/ni1539. PMID   17994024. S2CID   33725832.
  18. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, et al. (July 2008). "Tumor-specific Th17-polarized cells eradicate large established melanoma". Blood. 112 (2): 362–73. doi:10.1182/blood-2007-11-120998. PMC   2442746 . PMID   18354038.
  19. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. (November 2009). "T helper 17 cells promote cytotoxic T cell activation in tumor immunity". Immunity. 31 (5): 787–98. doi:10.1016/j.immuni.2009.09.014. PMC   2787786 . PMID   19879162.
  20. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. (September 2009). "A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses". Nature Medicine. 15 (9): 1016–22. doi:10.1038/nm.2015. PMC   3034219 . PMID   19701202.
  21. Crome SQ, Wang AY, Levings MK (February 2010). "Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease". Clinical and Experimental Immunology. 159 (2): 109–19. doi:10.1111/j.1365-2249.2009.04037.x. PMC   2810379 . PMID   19912252.
  22. Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, et al. (July 2015). "Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation". Nature. 523 (7559): 221–5. Bibcode:2015Natur.523..221G. doi:10.1038/nature14452. PMC   4498984 . PMID   25924064.
  23. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (November 2005). "Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages". Nature Immunology. 6 (11): 1123–32. doi:10.1038/ni1254. PMID   16200070. S2CID   11717696.
  24. Peroumal D, Abimannan T, Tagirasa R, Parida JR, Singh SK, Padhan P, Devadas S (August 2016). "Inherent low Erk and p38 activity reduce Fas Ligand expression and degranulation in T helper 17 cells leading to activation induced cell death resistance". Oncotarget. 7 (34): 54339–54359. doi:10.18632/oncotarget.10913. PMC   5342346 . PMID   27486885.
  25. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (November 2005). "Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages". Nature Immunology. 6 (11): 1123–32. doi:10.1038/ni1254. PMID   16200070. S2CID   11717696.
  26. Fumoto T, Takeshita S, Ito M, Ikeda K (April 2014). "Physiological functions of osteoblast lineage and T cell-derived RANKL in bone homeostasis". Journal of Bone and Mineral Research. 29 (4): 830–42. doi:10.1002/jbmr.2096. PMID   24014480. S2CID   32207557.
  27. Won HY, Lee JA, Park ZS, Song JS, Kim HY, Jang SM, et al. (March 2011). "Prominent bone loss mediated by RANKL and IL-17 produced by CD4+ T cells in TallyHo/JngJ mice". PLOS ONE. 6 (3): e18168. Bibcode:2011PLoSO...618168W. doi: 10.1371/journal.pone.0018168 . PMC   3064589 . PMID   21464945.
  28. Singh A, Yamamoto M, Ruan J, Choi JY, Gauvreau GM, Olek S, et al. (24 June 2014). "Th17/Treg ratio derived using DNA methylation analysis is associated with the late phase asthmatic response". Allergy, Asthma, and Clinical Immunology. 10 (1): 32. doi: 10.1186/1710-1492-10-32 . PMC   4078401 . PMID   24991220.
  29. 1 2 Favre D, Lederer S, Kanwar B, Ma ZM, Proll S, Kasakow Z, et al. (February 2009). "Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection". PLOS Pathogens. 5 (2): e1000295. doi: 10.1371/journal.ppat.1000295 . PMC   2635016 . PMID   19214220.
  30. 1 2 3 Pallikkuth S, Micci L, Ende ZS, Iriele RI, Cervasi B, Lawson B, et al. (4 July 2013). "Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21". PLOS Pathogens. 9 (7): e1003471. doi: 10.1371/journal.ppat.1003471 . PMC   3701718 . PMID   23853592.
  31. Fung TC, Artis D, Sonnenberg GF (July 2014). "Anatomical localization of commensal bacteria in immune cell homeostasis and disease". Immunological Reviews. 260 (1): 35–49. doi:10.1111/imr.12186. PMC   4216679 . PMID   24942680.
  32. Bixler SL, Mattapallil JJ (1 January 2013). "Loss and dysregulation of Th17 cells during HIV infection". Clinical & Developmental Immunology. 2013: 852418. doi: 10.1155/2013/852418 . PMC   3677006 . PMID   23762098.
  33. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. (December 2006). "Microbial translocation is a cause of systemic immune activation in chronic HIV infection". Nature Medicine. 12 (12): 1365–71. doi:10.1038/nm1511. PMC   1717013 . PMID   17115046.
  34. Gosselin, Annie; Monteiro, Patricia; Chomont, Nicolas; Diaz-Griffero, Felipe; Said, Elias A.; Fonseca, Simone; Wacleche, Vanessa; El-Far, Mohamed; Boulassel, Mohamed-Rachid; Routy, Jean-Pierre; Sekaly, Rafick-Pierre; Ancuta, Petronela (30 December 2009). "Peripheral Blood CCR4+CCR6+ and CXCR3+CCR6+ CD4+ T Cells Are Highly Permissive to HIV-1 Infection". The Journal of Immunology. 184 (3): 1604–1616. doi:10.4049/jimmunol.0903058. PMC   4321756 . PMID   20042588.
  35. Ogongo P, Tezera LB, Ardain A, Nhamoyebonde S, Ramsuran D, Singh A, et al. (May 2021). "Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung". The Journal of Clinical Investigation. 131 (10). doi:10.1172/JCI142014. PMC   8121523 . PMID   33848273.
  36. Nathan A, Beynor JI, Baglaenko Y, Suliman S, Ishigaki K, Asgari S, et al. (June 2021). "Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease". Nature Immunology. 22 (6): 781–793. doi:10.1038/s41590-021-00933-1. PMC   8162307 . PMID   34031617.
  37. Chang SH, Chung Y, Dong C (December 2010). "Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression". The Journal of Biological Chemistry. 285 (50): 38751–5. doi: 10.1074/jbc.C110.185777 . PMC   2998156 . PMID   20974859.
  38. Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN (September 2010). "1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis". PLOS ONE. 5 (9): e12925. Bibcode:2010PLoSO...512925C. doi: 10.1371/journal.pone.0012925 . PMC   2944871 . PMID   20886077.
  39. Hamzaoui A, Berraïes A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K (November 2014). "Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children". Immunobiology. 219 (11): 873–9. doi:10.1016/j.imbio.2014.07.009. PMID   25128460.
  40. Korn, Thomas; Bettelli, Estelle; Oukka, Mohamed; Kuchroo, Vijay K. (2009). "IL-17 and Th17 Cells". Annual Review of Immunology . Annual Reviews. 27 (1): 485–517. doi:10.1146/annurev.immunol.021908.132710. ISSN   0732-0582. PMID   19132915. (VK ORCID: 0000-0001-7177-2110. GS: h6h5FdoAAAAJ).